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PREFACE.

THE present volume contains all that Professor Boole
wrote for the purpose of enlarging his Treatise on Differential
Equations, Had he lived to publish the second edition he
would doubtless have incorporated his more recent investi-
gations with the original work, and it is therefore necessary
to explain why another plan has been adopted.

In some cases Professor Boole had indicated that certain
portions of the original work were to be omitted and their
places supplied from the manuscripts; but on examination
it appeared that in subsequent passages of the work there
were references and allusions to the portions thus marked to
be omitted which would not apply to the substituted matter.
Thus in attempting to carry out the directions it would
have been necessary to accept the responsibility of making
many alterations, and consequently to incur the risk of fail-
ing in the attempt to improve the original form.

Moreover the Treatise had been for some time out of
print, and the long delay which must have been caused by
the labour of reconstruction would have produced serious
inconvenience to students at Cambridge and elsewhere. Pro-
fessor Boole himself was always especially anxious to consult
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the advantage of students,wand those who had the charge
of his manuscripts were naturally inclined to adopt a course
of which they: beheved'he' would himself have approved.

The design of- ‘reconstructing the Treatise was therefore
abandoned; and it was resolved that the original volume
should be reprinted, and that the manuscripts should be
collected and published separately. This plan has the ob-
vious recommendation of enabling those who are already
familiar with the original work to turn their attention
readily to the new investigations. It will be seen that
many. of the Chapters of the present volume may be re-
garded as independent essays or memoirs which lose nothing
by being separated from the other volume; and indeed no
indications had been left by Professor Boole of the place
which such Chapters were to occupy in the enlarged edifion.

I have printed all the unpublished matter relating to
Differential Equations which I found among Professor Boole’s
papers. In a few cases it will be seen that an investigation

is intomplete; such investigations have however been in-

cluded in the volume, because I was unwilling that anything
should be lost which so great a mathematician had written
on a subject he had long and carefully studied.

I trust that no serious error will be found in the volume,
and that any faults which may be detected will be excused
on account of the nature and difficulty of the task that had
to be performed. Many of the manuscripts had not been

finally revised; some of them were very obscure and had

to be carefully and laboriously copied for the press. In
general the equations were not numbered, and thus only
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blanks occurred in place of references; this circumstance
often caused great trouble and perplexity: I hope however
that a satisfactory result has been finally attained. ‘

I may state for the benefit of those who are conversant
with the first edition of the original work that the theo-
rem which in the present volume is cited as contained in
Chap. II. Art. 1 will be found in Chap. IV. Art. 2 of
the first edition: the change was made by the direction of
Professor Boole’s interleaved copy. It was judged conve-
nient to number the Chapters in the present volume in con-
tinuation of those in the original work.

All additions of my own are enclosed within square
brackets. The sheets have been read by the Rev. J. Sephton,
Fellow of St John's College, as well as by myself, and the
volume is much indebted to his care and accuracy. Obvious
mistakes in the manuscripts were of course corrected; thus,
for example, the table at the end of the volume was calcu-
lated by Mr Sephton, because the table in the manuscript
was rendered erroneous by the use of a wrong éign in a
formula.

1. TODHUNTER.

St Jorn’s CoLLEGER,
November, 1866.
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CHAPTER XIX.

ADDITIONS TO CHAPTER II.

1. [IN Chapter 11. Art.9, two methods are given for
solving the differential equation

. (ax+ by +c)de + (a'z+ by + ) dy=0.]

But there exists another transformation by which the equa-
tion may be reduced to, (because it may be constructed from),
an equation in which the variables are separated.

‘Assume as this equation .
(4y' + C)da' + (A'c' + C') dy' = 0......(1)
and let d=x+my, y=x+my.
Tt will be seen that in these equations united we have as
many constants as in the original equation. Now on substi-
tuting in the assumed equation the values of ' and 3', and

comparing with the equation given, we deduce a system of
relations equivalent to the following, viz.: ’

The quantities m,, m, are roots of the quadratic
am*— (b+a)m+b=0.
The quantities 4, 4', C, C' are determined by the system
of equations
A+A'=a, O-I-C':c,
Am + Am,=d/, Cm + Cm,=¢,
B.D.E. IL ' 1

e



" oor (4'z'+ C) % (4y' + C)

2 ADDITIONS TO CHAPTER II. [cH. x1x.

from which we find

’
_amy,—a 0=cm,—c,
- 3
my—m, mg— m,
’ ’
A =00 o =M=
=—1 —t
m, —my m, — my

Now (1) gives on dividing by (4'z’+ C') (dy'+ C) and

integrating
T 10g (4 + €) + 5 log (4y +C) = const.,

Ko

= const.,

which on substitution and reduction gives

1
{(am, — a') (x + m,y) + om, — cfem— _
1 —

{(am,— @) (@ + m,y) + om, — o'}ma

2. Under certain circumstances the general solutions of
differential equations of the first order fail. This happens in
the above example if m, = m,, the solution then reducing to

1 = const.

The theory of the deduction of the true limiting form of
the solution in such cases requires a distinct statement.

Let the supposed general solution be represented by
uw=C,
C being the arbitrary constant and w a function of z, y, and
constants which are not arbitrary. Suppose too that when

one of these constants % assumes a particular value «, the
function u reduces to a constant v. Then we have

u—v C—v
k—x k-«

Now the second member being a function of an arbitrary
constant is equivalent to an arbitrary constant and may be
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. replaced by C. The first memberis a vanishing fraction, the
limiting value of which is (?Z—%), the brackets being used to:

denote that after the differentiation % is to be made equal to «.
Hence the solution becomes

(-

In applying this theory to the reduction of the general
solution (2) in the case in which m, =m,, it must be
observed that the numerator of the first member is the same
fanction of m,, @, y, as the denominator is of m,, =, y; or
attending solefy to their functional character with respect to
m,, m,, we may affirm that the numerator is the same function
of m, as the denominator is of m,. Representing these func-~
tions by ¢ (m,), ¢ (m,) respective1y, we have

é (m,)

u=-—1

¢ (m,)

But m,, m, being roots of a quadratic equation may be
represented in the form |

m=m+k m=m-—k,
the roots becoming equal when 2 =0. Hence

(m+ k)
T em—1n)"

Therefore since

dp(m+k) _dp(m+k)  dp(m—1k) __d(m—F)

dk dm ’ dk din ’
we have
db(m—k) -
g =B PG m i BED
k™~ [Bm—k) ’

1—2
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B db (m)
therefore (d—u) =2¢( ) __in = 2 dn
A C10) O

= 2% log ¢ (m).

Thus the solution becomes on putting C for ¢ ’

d
E;' l°g¢(m) = 0’

d 1 ' .
or Zam,log{(am—a)(:v+m_1/)+cm—-c}=C'.

3.  [The next Article seems to have been intended to ap-
pear in the enlarged form of Chap. 11.; but I cannot discover
what precise position it would have occupied. I conjecture
that ¢ the above demonstration” refers to Bhap. 1L Arts. 2, 3;
z(a}nd I have accordingly supplied a reference to equation (3) of

hap. 11

I had myself drawn Professor Boole's attention to Chap. 11.
Arts. 2, 3. The geometrical process of Chap. 11. Art. 3, ap-
pears to have been first given by D’Alembert in his Opus-
cules, Vol.1v. p.255. D’Alembert calls it a demonstration; it
seems to me only an ¢llustration, at least in the brief form of
the text: and t{at such was Cauchy’s opinion may perhaps
be inferred from the elaborate investigation given by Moigno,
to which Professor Boole refers in Art. 5 of the present
Chapter.

I had also drawn Professor Boole’s attention to the state-
ment at the end of Chap. 1. Art. 12, that only one arbitrary
constant was involved. Accordingly Article 5 of the present
Chapter developes this statement, and Article 4 seems intended
to bear on the same subject.] ’

4. In the above demonstration the relation between y and
x is regarded as one of pure magnitude, and the interpreta-
tion of the differential equation %ecomes a limiting case of
that of the equation of finite differences (Eq. (3), Chap. 11.).
But if we represent 2 and y by the rectangular co-ordinates
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of a moving point on a plane the differential equation may be.
interpreted directly. For supposing it reduced to the form

% =f(=, )

we see that the direction of motion is constantly assigned as
a function of the co-ordinates of position. The entire motion
is therefore determinate as soon as the initial point is fixed.
The result of the motion is a line or curve wholly continuous
or subjeet to irregularities according to the nature of the func-
tion f(z, y). That the arbitrariness of ori%in is geometri-
cally equivalent to the appearance of a single arbitrary con-
stant in the relation connecting = and y may be shewn thus.

Let Y=, ¥ @)
be the relation between x and y indicated by the supposed
motion, &,, ¥, bein% the initial point of departure. Then this
point being on the line of motion, #,, y, are particular values
of z and y, so that we ha¥e from the above equation

y0= ¢(w0’ yo’ xo)s

which establishes a relation between x, and y,, and shews
that there exists virtually but one arbitrary constant.

5. It is proved in Art. 3, Chap. 1I., that the constants
Ty Yo initiaY values of the variables «, y in the solution of
the differential equation of the first order, are necessarily
equivalent to one arbitrary constant. I shall shew from the
form of the above solution that this a priori condition is
actually satisfied.

Developing the expression for y [see Eq. (30) of Chap. 11.]
in ascending powers of , we have ) .

: Ax* A2
.’/=A0+A1x +T.L2_ + 12.3 + &e., cennenns(32)
: N I _ f: ('”nv ."/o) (- x)"7
inwhich- A, = =

the summation extending from n=r to n=00. Forming
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hence the differential coefficients of 4, with respect to «, and
¥,, and reducing by (28), we shall find

d4, dd,

=, + 4 (@ 90) &, o,
whence in particular

dA, a4, _

E‘ +f;(wo: %) @: =0.

Eliminate between these equations £, (z,, 7, and we have
dA,dA, dA,dA,

da, dy,  dy,

. Therefore, by Prop. 1., 4, is a function of 4, so that the
solution reduced to the form (32) contains but the single
arbitrary constant 4.

="

It remains to notice that the solution must be applied
only under the conditions of convergency, i.e. under the con-
dition that the ratio of the n'® to the (n — 1)*® term tends to a
limit less than unity as » tends to infinity. For a discus-
sion of the failing cases of this test see ¢ Finite Differences,’
Chap. v. Generally it is desirable, in order to secure rapid
convergency, to divide the interval « — z, into separate equal
portions, to each of which the general theorem of solution
may be applied. If x —x, be very small the theorem may
be approximately represented by

Y=Y =f(ze’ .1/0) (.‘l; - .’E‘).

On these principles Cauchy has founded remarkable methods
of solution, which deserve attention from the commentary on
the limits of error on their application by which they are
accompanied (Moigno, Vol. 11. pp. 385—434).
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CHAPTER XX.
ADDITIONS TO CHAPTER VIL

1. [Tuis Article relates to Art. 2 of Chap. vIL]

The sense in which (9) may be said to constitute the
general solution of the differential equation is this. We
obtain from it

y=0e"  y=0";

giving any particular value to C this will geometrically
represent a curve consisting of two branches, and giving to
C every possible value we obtain an infinite system of such
curves, each consisting of two branches. The aggregate of
branches thus obtained is evidently the same as the aggre-
gate of curves given by the two primitives (5) and (6), un-
restricted by any connexion between ¢, and ¢,. In this sense
then the solution (9) is general, that it includes all the parti-
cular relations between y and # which are deducible from
the original primitives (5) and (6). And it is only in this
sense not general that it groups these relations together in a
particular manner.

To the expression of the complete primitive a certain
variety of form may be given without affecting its generality
in the sense above affirmed. Thus, if to the solutions of the
component differential equations we give the forms

ye—c, =0, logy + ax —¢,=0,

we should have, by the same procedure, as the expression of
the complete primitive,

(ye™ —c) (logy +ax—c)=0,



8 ’ ADDITIONS TO CHAPTER VII. [cH. xx.

an e(iuation which may equally with (9) be regarded as the
complete primitive of the differential equation given, and
which in geometry represents the same totality of branches of
curves as (9), with this difference only, that they are differ-
ently paired together.

2. [This Article relates to Art. 3 of Chap. vir.]

The question will here naturally arise, Since if V'=¢ be
a solution of one of the component differential equations,
f(V)=¢, in which £ (V) denotes any function of V, 18 also a
solution, by Chap. 1v. Art. 3, why not give to the complete
primitive the fort

(A7) = {A ) = c}eueenee. () =} =0,

or the stricter form

FAVAT ALATS A0 T T (F),

in which £ (V)), £i(V,), ... f,(V,) denote arbitrary functions
of V,, V,y..oy I},, respectively—stricter because the presence of
arbitrary constants and functions in the previous form is a
superfluous generality ? It is replied that though the form
just given is analytically more general than (15), it is not
more general than (15) with such freedom as is permitted
in the interpretation of the arbitrary constants. In a physi-
cal or geometrical application we should not only be per-
mitted to assign a particular value to the arbitrary constant
in (15), so degﬁcing what in reference to its source would
then be termed a particular primitive, but to combine the re-
sults of different determinations of ¢ together, so as to obtain
every form of solution which is implied either in the func-
tional equation (F'), or in its component primitives

Ni=¢, Vi=6.., Vi=q.

The same considerations justify us in speaking of (15) as
the complete primitive, and not as a complete primitive.
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CHAPTER XXI.

ADDITIONS TO CHAPTER VIII.

1.. [THE Singular Solutions of Differential Equations of
the First Order received great attention from Professor Boole,
and the Chapter devoted to that subject is one of the most
valuable and important in his work. He continued his re-
searches after the publication of his first edition, and intended
to reconstruct the Chapter with great improvements in the
second edition. After carefully examining the manuscripts I
came to the conclusion that it would be very difficult to re-
write this portion of the work so as to connect the old matter
with the new ; and thus it seemed best to reprint the original
Chapter viir. with corréctions of obvious misprints, and to
print the matter intended for the revised form in the present
volume. The plan gives rise to some repetition; but this
seems unimportant, compared with the advanta%e of preserv-
ing in the author’s own language all that he left on an in-
teresting and important point which he had carefully studied.

2. It may be of service to the student to reproduce the
substance of some remarks on his Chapter vIiII, which were
sent to Professor Boole soon after the publication of his first
edition ; for there is evidence in his manuscripts that he paid
great attention to such remarks while engaged in the revision
of his work, and thus the reason and the meaning of some of
his additions and changes may be made more obvious. These
remarks will occupy the next Article.

3. The two pages beginning with “ And these conditions
are sufficient,” and ending with “do not lead to conflicting-
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results,” forming part of Arts. 3 and 4 of Chapter vIIL., seem
obscure and difficult. The following may perhaps be substi-
tuted with advantage.

The only ways in which

dy_dfme) o dy_df(z o) dflm o) de
dx dx de  dx de dox

can be equivalent when ¢ is variable, are

(1) when iﬁfc’—c)=o,

(2) when if;x’—c) =m0}

in the latter case fﬂ=w, and therefore é‘—”:O, and this
dx dy

implies that the singular solution is of the form x = constant.
Thus there can be no singular solutions except such as

are found from a_’f_gz,_c_) =0, and such as are found from

& = constant.

Similarly, if the complete primitive be expressed in the
form x = F(y, c), there can be no singular solutions except
dF (y, c)

such as are found from do

=0, and such as are found

from y = constant.

In Art. 8 of Chapter viil. we read, “ We may pass over
the case in which the above equation is satisfied independ-
ently of ¢, because the relation obtained would involve z

only, while it is a condition accompanying the use of ?:w

that it leads to solutions involving y at least.” It is ob-
jected, Why may we pass over this case? Such a case might
occur and furnish a solution, and then we should want to
know the character of that solution. Take for example

p=a"y; here if n is negative, gf—) is infinite when =0, and
g antl
this is a singular solution. For the general solution is y=cen+1,
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and so £=0 is not a case of it. The words—while 1t s
@ condition...at least—seem very difficult, for by supposition

we are now investigating what is furnished by cg =0,

Professor Boole met the objection in substance thus:

It will be found that the rules in the book are correct in
this case. What is implied in the Chapter, though not stated
with sufficient clearness, is that if (—Z_—I; = leads to a solution
which does not involve y in its expression, nothing is to be
i(r}fel}rled whether it is singular or not. Then the proper test is

)

- =00,

dz \p
In this example we have

dp _ . . . inf .
;l,;—oo gives z" = o0 ; no inference;

d /1
e (1) _ : ~(nt1), =1
dx(p>_°° gives o ™y =0,

Hence x = 0, provided = is between 0 and —1, or y=0.

Consider these separately :

First. Let n be between 0 and —1, and @=0. This is
by the test a singular solution. Substituting it in the com-
plete primitive we get y = ¢, which confirms this.

Second. Let y=0. This satisfies the differential equa-

. . d (1

tion; but from the fact that it comes from T (Z—):w we
have no inference; from the fact that it does not come from
% = o we have the inference that it is a particular integral: it
corresponds to ¢=0.
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There remains the case of 2=0 when n is between —1
and —co. As this does not satisfy ga-: (ll’) = o, we infer that
it is a particular integral. To prove this we have -

a1
c=ye "1,
‘When =0 this gives, since 1+ = is negative,
c=® or¢c=—0,

according as y is positive or negative. This is like Ex. 2 of
Chap. vir. Art. 8.”

The remark made by Professor Boole in the above reply,
that <f 3—p=co leads to a solution which does not involve y

nothing ©s to be inforred...is important. It corrects the state-
ment put too strongly in Chap. vii1. Art. 7, ¢ All we can affirm
is that if d—p=oo gives a solution at all it will be a singular
solution,”

From Art. 8 onwards it seems assumed that a solution for
which % =0 is always to count as a singular solution, even if

it should coincide with a particular integral. This does not
seem to have been quite the view of the former part of Chap-
- ter VIII. : see Arts. 5 and 6 of the Chapter.

In Ex. 8 of Art. 9 we read, “ the second is obviously a
- singular solution,” This means that since we have a solu-
tion which makes % infinite, we conclude that it is a singular

solution,

So in Ex. 5 of Art. 11 we read, “is evidently a singular
solution,” when it seems better to say, ¢ and is therefore a
singular solution.”

4. The additional matter relating to Chapter viII. begins
with another example which was to be placed at the close of
Art. 3 of that Chapter.]




ART. 4.] ADDITIONS TO CHAPTER VIII. 13

Ex. The differential equation
(V;d"+y"—m'—y)%—z=0
has for its complete primitive

Ne'+y'—m'—y—c=0.

dé y L dp_ @

H ——=—:._—l = e—
T W Very—m O & Voiy_m
dé _

—d;——l.' |
H dy  Na&'+y'—m' de _No'+y' —m
ence &,z—y———————_ '—_—a:"+y"—m” T e
Both % and 'Z_:‘ vanish then if

+y—-m'=0.

This therefore is the singular solution and it satisfies both
the tests, a8 both & and y are contained in its expression.

Of the partial tests

db_, db__ db_

% = 0) -d_a; =w, @ = w ’

the first is not satisfied, the last two are satisfied. _
The determination of ¢ as a function of 2 by the solution

of the equation 'f_’f%’ﬂ =0 is equivalent to determining

what particular primitive has contact with the envelope at

that point of the latter which corresponds to a given value
of z. '

One important remark yet remains. The elimination of ¢

between a primitive y=f(x, ¢c) and the derived equation
-:Z%/ =0, does not necessarily lead to a singular solution in the
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sense above explained. Far it is possible that the derived

equation
df (z, c) 0
de

may neither on the one hand enable us to determine ¢ as a
function of z, so leading to a singular solution; nor, on the
other hand, as an absolute constant, so leading to a particular
primitive. Thus the particular primitive

y=¢

. . dy .
being given, the condition ‘7‘?—6{ gives

whence ¢ is + if = be negative, and — o if & be positive,
It is a dependent constant. The resulting solution y=0
does not then represent an envelope of the curves of particu-
lar primitives, nor strictly one of those curves. It represents
a curve formed of branches from two of them. It is most
fitly characterized as a particular primitive marked by a sin-
gularity in the mode ofp its derivation from the complete pri-
mitive.

All the foregoing observations and conclusions may be
extended to the case of solutions derived from the condition

0.

.de
5. 'We have seen that the equation Z—'Z = 0 may be satisfied

by an absolutely constant value of c, so leading to a particu-

lar primitive and not a singular solution. In this case

Y (x+k, c) as well as 4 (x, ¢c) would vanish, and the nume-

rator of (9), instead of being the difference of a finite and an -
infinite quantity, would be the difference of two infinite and

equal quantities. [See Chap. virrL Art. 8.] It would not there-

fore be infinite. Hence we conclude that :—?3 would not become

infinite for a particular primitive in the strict sense of that
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term, i.e. for a solution derived from the complete primitive
by giving to ¢ an absolutely constant value.

This is one point of contrast between the conditions
Y _y P
de 7 dy
There is another not less important. As the numerator

of (9) may become infinite not only when ¥ (z, ¢) =0, but
also when + (z, ¢) = infinite, we see that a relation between

y and 2 which makes Zg infinite will not necessarily satisfy
the differential equation. On the other hand, jt is not a par-
ticular primitive in the strict sense of that term.

=m0,

Exactly in the same way the condition %‘g =0, as relating

to the complete primitive, leads to the condition

£

as relating to the differential equation, with the same points of
difference in the respective applications.

Ex. Let g—‘-:i=myT , and suppose m a positive constant

greater than 1.

m-1

ap _ -
Here .3;—(m—1)y .

which becomes infinite when y=0. As this involves y and
satisfies the differential equation it is a singular solution.

To confirm- this conclusion we may refer to the complete
primitive
y=(z—c)"
which does not give y = 0 for any particular value of c.

Now let m be a positive constant less than 1. We have

still % =o when y = 0; but this value of ¥ no longer satis-
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fies the differential equation. It is not a solution at all, nor
would it result from the application of the condition %:0
to the complete primitive. The distinction of character of
the two tests is here made manifest.

6. We may express the most important results of the
foregoing investigations in the following theorem.

TueOREM. Every solution of a differential equation of the
first order which is derived from the complete primitive by
giving to ¢ a variable value will, if it involve y in its expres-
sion, satisfy the condition

L/ S

dy
and if it involve &, the relation

40,
az" (p =ao0.
But relations satisfying these conditions will not neces-

sarily be solutions of the differential equation.

In applying this theorem the following points must be
carefully attended to.

1st. . No conclusion can be drawn from the satisfying of
the condition Z—P = when the relation in question does not

contain y in its expression, nor from the satisfying of

4 (1> —w

de\p)
when the relation in question does not involve z in its ex-
pression. For these conditions being respectively derived

from %=0 and %=O are subject to the same limitations

in their application.

2ndly. It may be that g:—ly) or éiw (})) assumes for a particu-

lar relation between = and y the indefinite form g In this
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case we must seek by the development of its terms or by
other known modes its true limiting value or values, Finite
values will indicate particular primitives, infinite values sin-
gular solutions, and when such values emerge together out of
the same relation between the variables, the solution will be
‘a particular primitive possessing the geometrical properties of
a singular solution. Its locus will be a particular cuzve en-
veloping other curves of the same family.

See Examples 2 and 8 of Chap. viir. Art. 11,

‘We have seen that the conditions

dp a (I)

L=, —(=]=wo

ay

indicate in general the existence of a relation between ¢ and
worcand y. And when that relation is such as te enable us
to determine ¢ as a continuous function of one of the vari-
ables, the corresponding solution of the differential equation
is singular, and 18 geometrically represented by an envelope
of the curves of primitives, But it may be, as we have seen
in a particular example, that the relation does not determine ¢
as a function of z or y ; but according to the language already
used, ¢ is a dependent constant, or in some other way different
from the constant of an ordinary particular primitive. Let
us examine in particular instances the kind of singularity
which may hence arise.

Ex.1. Given p= 'y—lz—g:z.
dp 1 .
Iere Z}; == (1+logy).

This becomes infinite if =0; but this not involving y
must be rejected. Again, it becomes infinite if y =0, and
this proves to be a solution of the differential equation, the
limiting value of the indeterminate function in the second
member being 0 (Todhunter’s Differential Calculus, Chap. x.).
Now the complete primitive is y=e~, discussed in Art. 4.
The constant ¢ is there shewn to be dependent, the solu-

B.D.E. IL 2
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tion ¥ =0 emerging from the complete primitive by making
e¢=—oo if = be positive, and ¢ = if = be negative,

. ¢ ’
Ex. 2. Given (Z—'Z) —zy g—z +y'logy=0.

—4logy)t
Here p=xyi-y(a,’2 4logy) ;

dp__xi(a:’—:ilogy)*_ 1
therefore = 3 ¥ @ —1logy) 10

and this is made infinite by y=0 and by 2*—4logy=0,
ie. by

R

y= 0, y=
Both satisfy the differential equation.

Now the complete primitive is

Y=

‘We see at once therefore that the second of the above solu-
tions is singular. The first however is deducible from the
complete primitive by making ¢=o or ¢=—o, irrespec-
tively of the sign or value of @, provided only that x be
finite ; not so however if « be infinite. The value of ¢ is not -
therefore in the most absolute sense independent of that of .
If from the complete primitive we seek the singular solution

by the condition ?i% =0, we get the two equations

=0, z~2=0.

The second of these determines ¢ as a function of =, and
leads to the second of the solutioms obtained above. The first,
though it does not determine ¢ as a function of z, still ex-
presses a relation between ¢ and «, which is the ground of
the fulfilment of the condition

3—=oo.
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‘We may further notice a peculiarity arising from this rela-
tion. Supposing « finite and the solution y=0a f)articular
integral, it presents the singularity that it is the only case in
which two particular integrals agree. We might in any com-
plete primitive, by changing ¢ into ¢*, get two values of ¢ for
the same particular integral, but then it would be for every
particular integral.

One negative character seems indeed to mark all the cases
in which a solution involving  in its expression satisfies the

condition gg =o. It is that such solutions do not emerge
from the co:lxlnplete primitive by the attributing of a single and
absolutely constant value to c. The relation which makes Z—I;
infinite satisfies the differential equation only because it satis-
fies the condition % =0, and this implies a connexion be-

tween ¢ and «, which is the ground of a real though it may
be unimportant singularity in the solution itself.

At this point, then, the question afises, whether the term
singular s(Hution shall be confined to that class of solutions,
the loci of which represent the envelopes of curves of primi-
tives, or shall be extended to all solutions which, satisfying the

condition %’ =, indicate the existence of a relation be-
tween ¢ and @, and possess an actual singularity arising from
this source. 'While the all but universal consent of mathe-
maticians is in favour of the former course, it is to be remem-
bered that the question is solely one of definition. Not such
is the question how singular solutions of the envelope species,
or as would more generally be said true singular solutions,
are to be distinguished from all other solutions. This we
now propose to consider. The question is not an isolated one.
It stands in close relation to a series of properties of singular
solutions which admit of an orderly devegopment.
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Discrimination of singular solutions of the envelope species.

7. A negative test, which in the great majority of cases
suffices for the present object, is suggested by the following
consideration. ‘

dy

The differential equation determining P function of

2, 8
@ and y determines also Z’&%' %, ad inf., and the know-

ledge of these enables us to construct in a developed form
the complete primitive. See Chap. 11. Art. 12.

The values of Z—Z, %, &e. ad inf.,, as derived from the

differential equation, are the same as those derived from the
complete primitive.
.

But a solution deduced from the condition %= ® is only

constructed so as to yield the same value of % as the given
differential equation does. If it be of the envelope species,
the curve it represents has in general no continuous contact
with the curve of any particular primitive. It will not there-
d

—d? ) &e. as
the differential equation does. It will not therefore generally
satisfy the differential equations of an order higher than the
first, which would be derived from the given equation by dif-
ferengiation. Hence we have the following Proposition.

3,
fore generally yield the same values for g{g ,

PROPOSITION. If a relation which makes Z—p infinite satisfy

the given differential equation of the first order, but do not
satisfy all the higher differential equations obtatined from it,
such solution will be singular and of the envelope spectes.
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Ex. 1. By comparison with its complete primitive we saw

m_—l
in Art. 5 that Z—i=my * ‘has for a singular solution y=0
when m is a constant greater than 1.

‘We will first suppose m a fractional quantity greater than
1, and endeavour to deduce the character of the solution with-
out making use of the complete primitive.

From the solution we have

d: d* .
Ig=0’ de‘;,y=0, &e. ad inf.

But from the differential equation
& 14 =t
=m-1y "L =mm-1)y~,
and generally
2 m(m—1)...fm—r+ Dy =

Hence, when 7 is less than m, the substitution of y = 0 gives

Ty _
= 0
as before. But if » is greater than m, it gives
ay
%’ =0,

We conclude that the solution is of the envelope species.
Secondly, suppose m a positive integer greater than 1.

In this case we find, when r is less than m, the same series
of values as before; but for » =m we have

dy
=¥ =m(m —1)...1 .
dx” ( RS %

and this also shews the solution to be of the envelope species.
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Ex, 2. The differential equation

(y—ap) _="+3")
1+p° 4

is satisfied by
@+ y'=4.

Is this a singular solution or a particular integral ?

From the solution we find
dy __= dy__4
de ™y’ d ¥’
From the differential equation we shall have
&y _ _(1+p)(+y)
dz' 2(y—ap) °’

dy , obtained from Ithe.

substituting in which the value of e

proposed solution, we find

dy__@+y)_ 8
= -

Now this differing from the value before obtained, we con-
clude that the solution is singular and of the envelope species.

And this result is verified by comparing the solution with
the complete primitive

(=) +(y—V1=-¢)=1.

As the test above exemplified is merely negative, it is in-
sufficient. For it is conceivable that an enveloping curve
should have an infinite order of contact with each of the curves
which it envelopes, and this is also possible. Any test found-
ed upon a comparison of the values of differential coefficients,
any test therefore furnished by the Differential Calculus, would
be insufficient for the discrimination of such cases.

Ex. 3. Given Z—Z =y (log y)*
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Here %:w gives y =0, and this satisfies the differen-
tial equation.
From this solution we find

2, 3
B0, LYo, g adinf.
From the differential equation we have

% =y {(logy)* + 2 (log v)*},

which consists of y multiplied by a rational and entire func-
tion of logy. It is easy to see that all the higher differential

coefficients of y hence derived will possess the same character,
And all such vanish with y.

We can therefore neither affirm nor deny that the proposed
solution is of the envelope species.

8. Before demonstrating a general Rule for the discrimi-
nation of solutions of this character, we shall notice certain of
their properties which serve to indicate in what direction the
Rule 1s to be sought. [See Chap. virr. Art. 14.]

As the exact differential equation differs from the sup-
posed given differential equation by having acquired a factor
which the singular solution makes infinite, 80 the given dif-
ferential equation may be said to differ from the correspond-
ing exact one by containing a factor which the singular solu-
tion makes to vanish. If we knew that factor, we could by
rejecting it reduce the given differential equation to a form in
which it would no longer be satisfied by the singular solution.
Now Poisson has shewn on a particular assumption, which
does not however affect the principle of the demonstration,
that this factor can be found when the singular solution is
known. His demonstration is in substance as follows.

Let us represent the given singular solution of the dif-
ferential equation by

u=0,
u being a given function of « and y. Then introducing » and
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« instead of y and « as variables, the differential equation
after transformation will assume the form

du
1—1'—:0=f (‘”s u).

Now this equation being satisfied by u=0 and the first
member vanishing, the second must also. Poisson now
assumes, and the assumption must be carefully noted, this
second member to be cagable of being developed in ascending
positive powers of u. Supposing it so developed, the diffe-
rential equation becomes

du
dz

in which 4, B,... are functions of z, and a, 8,... ascending
positive indices.

= Au* § B 4 &,

Hence if w=0be a singular solution we have, putting p -

for d_:’
gg = daws 4+ BRuP1 + &e. =0
But this demands that there should be at least one mega-
tive power of u in the development in the second member.
Therefore a — 1, the lowest index, must be negative. There-
fore a being already positive must lie between 0 and 1.

‘We may give therefore to the transformed differential
equation the form

du N
%‘—'Qu)

a being a positive fraction, and @ not vanishing with u.
Hence, dividing by u°,

du
u-‘%‘—" Q;
or _1__ iulﬂ‘l= Q,
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a differential equation which is not satisfied by u =0, since
u=0 gives '™ =0, and the first member vanisies while the
second member does not vanish. In its present form then
the equation is not satisfied by u=0. We see also that the
property of being satisfied by w=0 has been lost not in
reality through a transformation, but through the rejection of
an algebraic factor w* from the transformed equation. It has
been shewn in the treatment of Clairaut’s equation, how in
the ascent by differentiation to an equation of a higher order
a somewhat analogous effect is produced, the singular solu-
tion emerging out of a factor of that higher equation.

If we inquire what is essential in Poisson's demonstration,
we shall find it to consist in that the transformed equation is
of the form

du

&=qT,

in which while @ neither vanishes nor becomes infinite when

%= 0, the functions
du
U and J’: Y /i

both vanish with . The question whether U is of the form
u* as Poisson supposes, or is not, is wholly immaterial.
This will fully appear from the demonstration of the follow-
ing theorem, which is in effect Poisson’s freed from arbitrary
assumptions.

9. ProposITION. If u=0 be a slation of @ diffreial
equation of the first order between y and x, a

d

=@ )

represent the form which that equation assumes when u and
are assumed as variables instead of y and =, then if f(x, u) be
resolved tnto two factors Q, U, of whick @ neither vanishes
nor becomes infimite when u=0, while the functions U and

f “% both vanish when =0, then the differential equation can
be reduced to a form in which 5t shall cease to be satisfied by

u=0.
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In the statement of this proposition = is supposed to be
constant in the integration relative to u.

The differential equation after the transformation which
introduces  and « as variables becomes

du

&= OV
* du
Let 07=v,

go that v is in general a function of = and w, the form of
which is known by integration when that of U is given.
And again, transform the differential equation by making v
and « the variables instead of w and @. 'We have

(@_) g dv du -
dr)  dz” du dx’
in which j—l;l is the differential coefficient of v with respect to

z, on the above hypothesis as to the constitution of v as a

function of x and w, while (;—zl—;) is the differential coefficient

on the hypothesis that v is reduced to a function of « alone
by the conversion of » into a function of @.

) dv 1 du
Since vty Z,,=QU,

the above equation becomes
dv\ dv
(@) =2+

Now if u=0 give v=0 for all values of , it will there-

fore give
dv
FARD
and farther,
dv _d [*du

&= dz), T
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since we are permitted to make u =0 before effecting the
differentiation with respect to . Hence the equation re~
duces to

0=20Q.

And this is not satisfied, since by hypothesis @ does not
vanish with .

Hence if v =0 make f %=0, the transformed differen-

tial equation will no longér have u =0 for a solution.

Cor. Assuming @ =1, which does not violate the hypo-
thesis respecting @, and gives -

U=f(z, u),
we see that if p
. =r(=,u)
be satisfied by u=0, and if at the same time u =0 gives
du
——=0
o fl@yu) 7

the differential equation can be transformed so as to cease to
admit of the solution % =0.

It is obvious however that it is best to assume @ so as to
make the subsequent integration for determining v the sim-
plest possible.

It is manifest that a solution which can thus be made to
cease to satisfy the differential equation cannot be a particular
primitive, For the complete primitive of the transformed
differential equation which it does not satisfy is convertible
into the complete primitive of the original differential equa-
tion which it does satisfy, merely by writing therein for v its
expression as a function of z and y. It cannot therefore be a
case of the complete primitive in any sense. It must be
a singular solution of the envelope species.

The converse proposition still remains to be proved.
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10. ProprosiTION. If u=0 be a singular solution of the
envelope species of a differential equation of the first order, and
tf by assuming u and x as the variables, the differential equa-
tion 18 reduced to the form

.

%=f (@, w),
then will
v du
W~
become 0 when u=0.
Let the complete primitive be represented by
F(z, u) =C,

dF (@, v) , dF (e, w) du _
dx du dx

we have if for brev:ity we represent F'(z, u) by F,

then, since

0,

dF
du__de,
&=~ @
du
wdF
du du
therefore om = - E—E du.
o dx

Now u=0 being a singular solution, F (z, 0) is not a con-
stant; for if it were, the complete primitive would, on giving
to C the constant value in question, yield » =0 as a particu-
lar primitive. And this would equally be the case whether
that constant were finite or infinite in value. We see then

\
that F (x, 0) must be a function of @, and therefore i%—o)- .

must either be a function of @, or a finite constant differing
from 0; the latter if F'(z, 0) be of the form ax + b, the former
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if it be not of that form. Therefore the value of ——dF‘g:’ %)

when % =0, since in this we are permitted to make u=0
before differentiating with respect to z, will be a function of
, or a finite constant differing from 0.

Now it is manifest that in general

* 1 dF dF
@Edu—ﬂl . %du,
dx

[)
where H is some value intermediate between the greatest and

least values which iFassumes within the limits of integra-

dz
tion. 'When these limits are, as in the above case, infinitesi-
mal, we have

‘ du 1
Hence Few - e, 0)[31—‘ du

=3F(-1;;0-) (F (@ w) - Fla, 0)}
—d

But we have seen that iﬁ%& does not vanish. Hence

its reciprocal, the first factor of the right-hand member of the
above equation, does not become infinite, Again,

F("‘”’ u) "'F(w’ O)
vanishing when % =0, we have ,
du
2 o
of (@yw) 7 ,
when u is made infinitesimal as was to be shewn.
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~ It will be observed that the previous general express'ion
for f . f% becomes infinite if w =0 is a particular integral.

For then, F(z, 0) being a constant, dFd(:’O) vanishes, while
F(x, u) — F (@, 0) does not vanish so long as u differs by
however small a quantity from 0.

These propositions form the ground of the following Rule
for the discrimination of singular solutions of the envelope
species from all others. :

11. Rure. The proposed solution being represented by
w =0, let the differential equation, transformed by making u
and « the variables, be

du
‘-2-5+f(z, u) =0.

Determine as a function of # and w the integral
“du
o U’
in which U is either equal to f(z, ), or to f(z, u) deprived

of any factor which neither vanishes nor becomes infinite
when = 0. If that integral tend to 0 with « the solution is

gingular.
Ex. 1. Determine whether y=0 is a singular solution or -
particular integral of the differential equation

d .
ZL =y (ogy)
Here, since u =y, no preliminary transformation is needed.

' dy 1
We have j: yogy® logy’

which tends to 0 with y. Hence the solution is singular.

To verify this we observe that the complete primitive is

1
y=e,




ART. 11.] ADDITIONS TO CHAPTER VIIL. 81

and this cannot be reduced to y=0 by giving any constant
value to c.

‘We have seen in Art, 7 that the test which is founded upon
the comparison of differential coefficients does not suffice to
characterize the above solution.

Ex.2. The equation %=?ﬂ%‘1—/ is satisfied by y=0.
Is this solution singular or particular?

Here also no transformation is required. 'We have, reject-

ing the factor -la; which neither vanishes nor becomes infinite

when y=0,
dy
L ylog y—logiogy— log log 0
0
= log logg ?

and this being infinite, however small y may be, may properly
be said to tend to infinity as y tends to 0. The soﬁltion 18
therefore particular.

It will perhaps appear at first sight as if in the above ex-
ample we ought to write

logy _ 1001
log log0 =~ log1=0
when y is made equal to 0. But the course of the demonstra-
tion shews that the value of the definite integral must be first
obtained on the hypothesis that u (in this case replaced by y)
is finite, and then the limiting value which its expression
approaches to, as u approaches to 0, be sought. And in this
cage, since for all finite values of » however small the integral
is infinite, its limiting value is infinite.
The complete primitive in the above case is
y=e,

and the nature of the solution y=0 has already been dis-
cussed in Art. 4.
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History of the Theory of Singular Solutions.

12. It is remarkable that while the theory of enveloping
curves and surfaces was at once founded and developed by
Leibnitz in 1692—4*, the corresponding theory of the singular
solutions of differential equations has been of very slow growth.
The existence of these solutions was first recognised in 1715
by Brook Taylor; it was scarcely more than recognised by
Csl’airaut in 17384, Euler, in a special memoir, entitled Z:
sition de quelques Paradoxes dans le Calcul Integral, published
in the Memoirs of the Academy of Berlin for 1756, first made
them a direct object of investigation; but the foundations of
their true theory were only laid in 1768 in his Institutiones
Calculi Integralis. Laplace, Lagrange, Legendre, Poisson,
Cauchy, and De Morgan have in various ways developed and
extended that theory; but there has been so remarkable a
want of unity and connexion in this long series of researches,
that important portions of the theory appearing in a too
isolated form have been neglected, forgotten, and rediscovered.
I purpose here to give a brief account of what seems most cha-
racteristic, rather than of what is most original in their several
researches ; for the germs of nearly all subsequent discoveries
on the subject are to be found in the great work of Euler.

Taylor and Clairaut appear to have been led by accident to
the noticing of singular solutions; the former while directly
occupied on the solution of differential equations, the latter
while discussing a remarkable class of problems relating to
the connecting properties of different branches of the same
curve. Taylor gave them the name singular, while Clairaut,
and Euler too in his memoir, regarded them as a species of

aradox, not merely from their non-inclusion in the general
integral, but from the mode of their discovery through a
process of differentiation. The memoir of Euler, though it
sheds no light on the real nature of these solutions, contains

® Acta Eruditorum, 1692, p. 168 ; 1694, p. 811, Opera, Tom. 1. pp. 264,

Methodus Incrementorum, p. 26.
Mémoires de £ Académic des Sciences, 1734, p. 209.

296
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an interesting theorem concerning their connexion with the
form of the differential equation, viz. If this equation can
. be brought to the form

Vdz =Z (Pdz + Qdy),
in which z is a function of z and y, and Z of z, then will
Z=0

be a singular solution. In his Institutiones Caleuli Integralis,
Tom. 1. p. 393, however, Euler gives a rule which 1s the
counterpart of that of Cauchy. [See Chap. viir. Art. 12.]
He shews that if =0 be a particular integral, and if the
differential equation be reduced to the form

du
d_a: = ¢ (x, u)p

then rﬁ—a=w.

The limits of integration are here supplied. The reasoning,
which is not fully developed, is the following. From the
transformed equation we have

du
I
du

- Hence x=0+fm),

x 1 du
Z'=1+Z'f¢(w,u)'

If this be satisfied by a solution involving z and y, and if
that solution be a particular integral, then on putting for
its value in terms of w and integrating, the above equation
will be satisfied by giving some particular constant value to
C. But if the supposed particular integral be » =0, then x
and u being independent, we may perform the integration
with respect to « as if = were constant. The resulting equa-
tion cannot be free from « unless C be infinite, and then it

B.D.E. II 3
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will evidently not be satisfied unless f _du_ be infinite.
¢, u)

We infer then that this is a necessary condition in order that
u = 0 may be a particular integral.

This is Euler's fundamental theorem, and from this, by
means of an hypothesis agreeing with that of Poisson con-
cerning the form of the transformed differential equation, he
arrives at the condition 7

p
dy_oo.

[In the passage to which Professor Boole refers, Euler
does not undertake to discuss the nature of any solution,
but only of a solution of the form z = constant. On his
page 408 Euler proceeds to discuss the nature of any solu-
tion. Professor Boole seems to me to attribute too much
to Euler. For the convenience of those who wish to ex-
amine the original, I will give the reference to the passages
in the later editions of Euler’s Institutiones Calculi Inte%;ah's :
Vol. 1. pages 343 and 355 of the edition of 1792; Vol. 1.
pages 342 and 354 of the edition of 1824.]

Laplace in the Memoirs of the French Academy for 1772,
p- 343, established the tests

e, 40
y 7 de\p/

and shewed their respective uses. He established also the

test which consists in the comparison of differential coefficients,

and he supposes it universal. He adopts the hypothesis of

his predecessors as to the forms of expansion, but with some

recognition of its insufficiency. :

Lagrange in the Memoirs of the Academy of Berlin for
1774, p. 197, and 1779, p. 121, appears first to have developed
the theory of singular solutions in its two forms of derivation
from the complete primitive and derivation from the differen--
tial equation, and to have established the essential connexion
of these. But supposing the differential equation to be ex-
pressible in the rational form

F (=, y’P) =0,
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and employing the differential coefficients of F'(x, y, p) in-
stead of those of p he was led to sacrifice rigour to symme-
try. One of his results has often since been adopted as a
test of singular solutions. It may be thus stated.

Pror. A singular solution makes the general value of
dy
da?’

integral expression, to assume the form %

deduced from the differential equation in its rational and

[The demonstration is given in Chap. VIIL. Art. 14.]

This ambiguity of value of “%/; is evidently but an expres-

sion of the fact that the contact of a curve of the complete
primitive and that of the singular solution is not in general
of the second order.

The result given in equation (5) of Chap. viiL. Art. 14 has
also been adopted as the test of singular solutions.

The researches of Poisson and Cauchy have already been
noticed. It is certainly remarkable that the final test to
which Cauchy’s analysis led should be essentially the same as
that which had been discovered by Euler so long before.

Professor De Morgan has thrown an important light upon
the nature of the conditions
d d
‘i—z = Q0 N ;i% = Q0 )
which are fulfilled by all singular solutions in the expression
of which z and y are both involved. He has shewn that any
relation between x and y which satisfies these conditions will

2,
satisfy the differential equation unless it make %ﬂ;—y,, as derived

from the differential equation, infinite; that it may satisfy the
2,
differential equation even if it make %{ infinite ; lastly, that

3—2
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if it do not satisfy the differential equation, the curve it

represents i8 a locus of points of infinite curvature, usually
cusps, in the curves of complete primitives.

The proof is as follows:

Let ' r= 4’ (m9 y)
be the differential equation. Then the proposed conditions
are

@y _, @y _

Ty % T d o

therefore by differentiation, .
I’ 2 2
d¢ d¢dy=0, d_?i_k d'¢ dl—()’

dwdy T Iy du d* T dmdy du
whence we have
d*¢ d%*
dy M__ da
R S
I @dy

* These are two equivalent expressions for the same value of

j—z. The question now is, under what circumstances this

value of % will satisfy the differential equation.

Now from that equation we have by differentiation

Ty _db b dy
do*  dz ' dy dx’

whence
dy dp .
dy & I
o= —dF

dy
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3,
If then 2y be finite we have, since % and ¢ are both
P aw 2 gy

infinite,

¢

dy dx
&= T
dy

and this by the rule for the evaluation of fractions of the

form 2 is equivalent to the value in either of its forms before
obtained for %. Hence, any relation which satisfies the

-
given conditions and makes &y finite, will satisfy the diffe-

da’
~ rential equation.
3,
And the same result holds even if Z;",/ be infinite, provided
dy dp __ .
that y i vanish.

Lastly, as when this result does not hold, the failure is due
3,
to the infinite value of i—ly‘ , we see that the line in which the

locus of the proposed relation intersects the curves of primi-
tives will be a locus of their points of infinite curvature.

[Transactions of the Cambridge Philosophical Society,
Vol. 1x. Part 11.]

Legendre’s Memoir of 1790 throws but little light upon
the subject of this Chapter. But it exhibits the theory of
the singular solutions of differential equations of the higher
orders, both ordinary and partial, in a form of great beauty,
and will be noticed in the proper places.
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CHAPTER XXII.

ADDITIONS TO CHAPTER IX.

1. By successive application of the second theorem of
Chap. 1X. Art. 13, a linear equation of the 2™ order may be
reduced to one of the (n — )™ order, if » distinct integrals of
what the given equation deprived of its second term would
be are known.

The reduction may however be effected immediately by
the method of the variation of parameters. In this and in
most general investigations connected with differential equa-
tions great advantages in point of brevity and of the power of
expression are gained by the employment of the symbol of
summation 3, and of the language of determinants. I shall
exemplify this here.

Suppose the given equation to be

dy A7y, &
A, TEA ATt A=K ),

and let 7,, 9,,...9, be r particular values of y, satisfying the
equation

dn dn—l d‘n—i

d—% +4, a—z—,ﬁ +4, Jw—,,-_—”,, ......

Thus Y=Y+ CYy e + 7,

is a solution of the latter equation including these particular
solutions. 'We shall represent this by

and regarding the quantities c,, c,,...¢c,, represented here by
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¢; as variable parameters, shall seek to determine them so that
the above value of ¥ may satisfy the equation given.

. These r parameters, enabling us to satisfy r —1 arbitrary
conditions, besides satisfying the differential equation, we may
choose these so that

&y Iy Yy
dx ’ dzﬂ e dwr"l
may be the same n form as if ¢, c,, ... ¢, were constant. Now
from (3) p
—'—-20; y‘ +E gd )
whence

dy _Se o %! dy‘

provided that the condition

Ey‘ dc‘

be satisfied. Differentiating the first of these equations, we
find in the same way that

d? a*
Twyi: 20‘ b

da*’
provided that the condition
dy; do;
% &
be satisfied. And thus continuing we see that the system of
r equations ‘

=0

r—l J—'
y=Segy Doz, T3 U

will hold true provided that the » — 1 conditions

de dy‘ dc‘_ a7y dc{_ -
2 ‘_‘—0 2d‘—x' %—0,... ‘Jx—,'_, d—m—o...-...(d),
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be satisfied. In each of these equations the symbol 3 is to
be interpreted by giving to ¢ the successive values 1, 2,... 7,
and taking the sum of the results,

Differentiating the last of the equations (4), we have
dy o dy <d7y de
d—.’L’ = 20" W + 2

dx™ dx°

As we cannot imposé the condition that the last term of
this equation shall vanish, let z represent its unknown value,
then

& dr
=30 a i ().

Now the system of equations (5), together with
d7y; de;
dz " do 2,

constitute a system of r simple algebraic equations deter-
mining by solution the » quantities

p>

de’ da’"" dx

in terms of their coefficients and of 2, and therefore in terms
of z and z, since the coefficients are known as functions of
. Itis evident also that as the second members of all the
equations but one vanish, and the second member of that is
2, the values so determined will be of the form

%=Xlz, %:X,z, ...Z‘::X,z,

X, X,,... X, being known functions of . Thus the r un-

known quantities dey e

% %
o e made to depend upon only

one unknown quantity, viz. z, It remains then to deter- -

mine z.

For this purpose we must complete the expression of the
differential coefficients of y, and substitute in the given dif-
ferential equation, and then seek to satisfy that equation.
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Now differentiating (6) we have
d*'y Y s 'y, dy, dc. dz
dz™* Yda & dot o

drt
—Ec‘dx,z"l'-v (g—z_‘x)z-’-g-:;

+3 -

on substituting for fil—:‘ the value Xz as above determined.

‘We observe that the coefficient of z is here a known function
of z. If we differentiate this equation and in the result sub-
C; )

stitute as above for T’ ‘we shall have a result of the form

a dz d*
——’”zcidxz:'*"z +M2—; d&;’

L and M being known functions of x Ultimately then
we have

"y, d*z

-_Ec‘ =+ Pz "'Qd ...... + T

Thus, while y and the differential coefficients of y up to the
(r—1)® are of the same form as if ¢,, ¢,,... ¢, were constant,
the succeeding ones differ in conta.mmg an additional portion
consisting of 2, and differential coefficients of z multiplied by
known functions of #. The result of substitution of these
values in the given differential equation will therefore consist
also of two classes of terms, viz. terms under the sign of
summation, which will be the same in form as if ¢,, ¢,,...c,
were constant, and terms involving the differential coefficients
of z up to the (n — 7)™, with multipliers which are known
functmns of 2. We shall in fact have

e (‘§$+A1'Z‘Dz,‘+A,£ﬁ/j ...... +4,)
:dlw“-' +Rdw”_’._zl...'uo.+’g=xl
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Now y; being by hypothesis an integral of (2), the first
line of the above equation vanishes, and there remains the
linear equation of the (n — )™ order

LANCANG L
AR A

+8=X

Supposing z hence determined, we have in general

o= [Xads,
and hence

y=y, Xlzdw+y,fX,zdé: ...... +_’1/,fX;:d1’,

and as z will have n — r distinct values, each involving an ar-
bitrary constant, the above equation will furnish 7 —  distinct
values of y, each involving an arbitrary constant. It is to be
observed that no arbitrary constant need be added in the inte-
gration of the terms Xz dw, for the effect of such addition
would only be to reproduce the known integrals ¢z. In
this way, however, the equation would represent the general
integral of the differential equation given.

2. Let us examine the form of the result in the particular
case in which r=n—1.

Here we have

=Se “Z"’/s
from m =0 to m=n— 2, then
&y
dxn—l— zc‘d n—l. +z’

2"]"”‘+2( ‘Zn,f_’,‘) +ZZ.
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Accordingly the differential equation for z will be

dx+2 (X‘Zr,%ﬁ‘) I, RN o)

Now the equations for determining

‘Zﬁ _‘ic_n dcn—l
de’ dzx’"" dx

become on putting Xz for Z: , and writing for brevity y'; for
dy; d"
di , ' for dxy"" &e.,

¥.X + Y X, oo+ YuiXay =0,

3/1X;+y':Xs"' +?/n-1Xn-1=0’

..............................................

y "X +y."X, .. + 9, "X, =0,

yx(n-’)‘xl + yn(”‘ﬂX-s et yﬂ-l(r’)X'-l =1

‘Whence, by the theory of determinants,

_1 aM 1 dM

---------------------------
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Now the determinant is ultimately a function of z; and

such indeed that
E (x dwn-l) M‘ dz
For
_ EdM dy‘ SdM dy‘ 2 dM dyi(“'ﬂ
- dy‘ de " dy*™? de
M , -
—2 Edy, % +2dy(,,_.‘)y( ) e (8).
Now M bemg homogeneous and of the first degree with
respect to the quantxtles Yus Yareoeer Yny We have
E —— y(= M.

Hence 3, —ll y‘ is what M becomes when in its expression

_/,, Yay - are changed into ¥/, 9, ... ¥'n,, therefore it is
what M {ecomes when two of its rows of elements become
identical ; therefore it vanishes. In like manner all the other
sums in (8) vanish excepting the last, for y*™,....y, ™ is

not a row of elements of the determmant Thus we have
a . M
RE7 L
Hence
. 1 dM@ 1 dM
Xyl ‘)‘2— M y& = Ejjm‘

Thus the equation (7) becomes
dz  (1dM .
da:+<M @ +A)”‘X’

therefore z=—= e 4yd= f Me/1* Xda.
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Hence, since
de; — Xe= 1 dM

dz M dy, (""')
whence = ;{ dd{',{,) zdx,
we have Y=3y 111[ ddf,‘,[_,) zde,

z being given above.
In the case of X =0, we have
Z2= %G-ﬂ'h )
whence

¢ dM

y=2y¢ M’ dy(ﬂ)e Ald‘d’nn
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CHAPTER XXIIIL

ADDITIONS TO CHAPTER X.

1. THE theory of singular solutions of differential equations
. of the higher orders has been presented in the most complete

form which it has yet received by Legendre. (Mémoires de
U Académie Royale dZa Sciences, 1790, p. 218.) He determines
first the possible forms of these solutions considered as emerg-
ing from the complete primitive by the variations of its arbi-
trary constants, and secondly the theory of their derivation
from the differential equation itself. I shall follow the same
order, and shall in the end endeavour to Xoint out in what
respect Legendre’s theory may be regarded as complete, and
in what respect it is imperfect.

Suppose the differential equation to be of the 2™ order,
and let it when solved with respect to the highest differential
coefficient of y be represented by

Y=0 (9,9, y,l, cerYuy) eeeeneinriennnaans 1),
in which, for brevity,
dy 2y dy

y1=¢Tx’ yf:%’ "'yn=d';’7-'

Let also its complete primitive, solved with respect to y,
be represented by

Y=F(@, @, Gy e00 @) cvnvenninniinnnnnnns @),

a,, a,, ... a, being the arbitrary constants of the solution. If
we differentiate (2) with respect to «, regarding a,, a,,... a,
no longer as constants but as. functions of z, so to be deter-
mined as to leave the expressions for y,, ¥,, ... ¥, as functions

’
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of a, a,,... a, the same as before, we shall have, on repre-
senting the second member of (2) by f,

__df dfda df da df da,
yl____'..__‘_‘_l..__.__’ _____ +_n_’
Whence
d
y‘———dzf,

provided that

df da,  df da, df da,_

e Bl ot e 2=

Differentiating on the same hypothesis the first of these two
equations, we find in the same way

d;
yz=d”£7
provided that
&f da,  &f da, &f da,

e B M “In 0.

dwda, Azt dwda, dz " T Twda, &

And continuing thus, it results that the system

d d d
yl:ég’ y’=d—;f’,,._,y“=T/: ............. (3),

will be satisfied, i.e., that y,, y,, . .. 7, will have the same ex-
pressions when a,, a,,...a, are variable as they have when
these are constant, provided that the law of their variation be
determined by the conditions

df da,  df da,  df da, _ Y
da, dz t da, da " da, dz
&f da,  df da, &’f da

da,de do T daydo do N dw dw O o (-
Ld_a!.*__ﬂ_% + d’:f__ da"_()
da,da dz " dada dz dado i dz )
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In this system the coeflicients of
da, da, da

dz’ EE’“.%

are known functions of «, a,, 4,, ... a, when the form of £ is
known. '

Eliminating
da’l dan dan

de’ do’'" dx’
we have a relation between 2, @, a,,...a,; and this relation,
with the given complete primitive and the first n—1 of the
derived and reduced equations, viz., with

af _af

' dj
y=f; yl=a'£, 3/9=W,-~-3/...1—dz..-u

will enable us to eliminate a,, a,,...a,, and to obtain a rela~
tion of the form

This is a differential equation of the (n —1)® order. It dif-
fers in its origin from the given differential equation, in that
a new relation between z, a,, a,, ... a, has been employed in -
place of the n* equation, derived by differentiation from the
complete primitive, for the elimination of the constants.

The differential equation of the (n —1)* order thus obtained
has an integral expressing y in terms of «, and n —1 arbi-
trary constants. This is the most general form of a singular
solution of the differential equation.

It is possible that the elimination of a, a,,...a, may
lead to a resulting differential equation which, instead of
being of the order n—1, ig of the order n—2, n—3, &ec.
The complete integral of*such equation would be a singular
golution of the differential equation. These possible types of
solutions are distinguished by Legendre according to the
number of arbitrary constants which they contain. A solu-
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tion containing n — 1 arbitrary constants is called by him a
singular solution of the first” erder; one containing n— 2 ar-
bitrary constants a singular solution of the second order, and
80 on.

Adopting this language we might term the complete primi-
tive a singular solution of the orger 0.

Lastly, any relation between 2 and y, which satisfies the
given differential equation, will constitute a particular case,
either of the complete primitive or of one of the general
forms of singular solutions above defined. In the case of
differential equations of the first order it is seen that no arbi-
trairy constant can appear in the expression of the singular
solutioni. :

Ex. The equation
y— w%-l-‘ %w‘% - (@)2—(@ - w@)'— 0

da’ dz*)
has for its complete primitive
y=—a§, +6a:+a’+ ...... '..'.....-..b....(G),
Tequired its singular solution.

Proceeding as above, we find on the hypbothesis of a and &
being variable parameters, the same formal expressions for

% ’ :%:—/’ as if those parameters were constant, viz.

dy _

K

L =q

d’

provided that the variation of a and b be such s to satisfy
the conditions

o da db
(E' +2a)d_a:+ (x+ 20) 7= =0
B.D.E. IL 4

a-’-o.occoco--oo.c--.-10(7)’

.
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Eliminating hence g—g and % , we have
| 2a — %’ — 2bz=0.
And from this, the complete primitive, and the first of the
derived equations (7) eliminating & and b, we find
dy\' , (o dy z
(Zr) + (5 +w)% (1+2) g = To=0eee(9).

This is the differential equation of the first order, by the
solution of which the most general form of the singular solu-
tions of the given differential equation will be determined.

Reducing it to the form
‘ Ady + (2 + 2*) da
(16y + 42* + 2*)4
and integrating, we find -
16y + 48 + 2V =2 (1+ 2D} + log fw + V(1 +2))} + C.

This then is the general expression for the singular solu-
tions of the given differential equation. We see that it in-
volves in its expression one arbitrary constant.

= (1 +a%) de,

The differential e(.luation (9) may properly be termed a sin-
gular first .integral of the given differential equation. The
singular first integral (9) has itself also a singular solution,
viz.

1, 1,
_9/::—2:1:'—1—6:0 H

but this is not a solution of the original differential equation.
Nor have we any right to expect that it should be so. A
singular solution of a differential equation of the first order
does not necessarily satisfy the differential equations of higher
orders derived from that equation, Chapter xx11. Art. 7.

2. It remains to establish the theory of the derivation of
the singular solution from the differential equation without
the mediation of the complete primitive.
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Resuming the differential equation in its reduced form (1),
and rei)resenting its second member by ¢, suppose an infini-
tesimal variation given to the arbitrary constants of its com-
plete primitive, and let the symbol & be used to denote the
corresponding derived variations of y, y,,...y,. Then we

have
_dp,  dd de
Sy'—@ sy +d—y; 8y‘ eoe + Ey—n—; syl—l.'
oy db o'y d*®
But 4= =@ == g -

and so on. Hence, substituting and transposing,

Py dp &by dp Iy o
> ~ Ty —dy.._, e &c.—Q......(lo). 4

Let us consider the real nature of this equation.

If a value of y, suppose y = yr(z), satisfy the given differ-
ential equation, that value substituted in the coefficients

dp  dp o
) Ce
dyﬂ-l ’ Y,y

of the above equation will convert them into functions of z,
and the equation itself will become a linear differential equa-
tion, the solution of which will determine 8y as a function of
2. If the differential equation (10) be really, as it is appa-
rently, of the n'® degree, 8y will have n arbitrary constants,
@,y ...d,, and will be of the form

dy=aP +aP,...+0a/P,
P, P,...P,being fanctions of z. Hence

y+dy=v@) +al,...+0ap,.

‘We see thus 'that the given solution y= r(z) will be a
rticular case of this general integral involving n constants,
fg will therefore be a particular integral of the proposed.

4—2
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If, owing to the constitution of its coefficients, the differential
equation (10) be of the degree » — 1, we shall have

y+8y="k(m) +axPn:'°'+an~LP-n

and y=1(z) will then be a particular case of a solution
involving n —1 arbitrary constants. It will therefore be a
singular solution of the first order. Even so, if the differen-
tial e?uation (10) be of the degree n —2, y = yr(x) will be a
singular solution of the second order. And generally, if
the differential equation be of the r* degree, y =+ () will be
a singular solution of the order n — 7.

Resuming the équation (10) it is evident that it cannot
be of the degree 5 — 1, unless 22 be infinite. For, dividing

p Yy
by ‘V‘l’—’ we have
-l :
LIy a7y
T =
Yoy

in which the first torm docs not vanish unless % b iui-
nite. This then is the necessary condition for a lsingu]ar
solution of the first order. For one of the second order we
must have in like manner

d dp

———-:—.w,, =|=w;

ay,., y

and so on.

Tt follows hence that to find the singular solutions of a
differential equation of the n order, we ought to differentiate

the equation, regarding y, %, % » &e. as varying through

the variation of the arbitrary constants, to form in this way
a linear differential equation for 8y, to examine the conditions
under which this equation reduces to the (n —1)®, or to a lower
degree, and to examine whether the most general relation be-
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tween « and y which satisfies such condition, satisfies also the
given differential equation. If so it may be regarded as a
singular solution.

Resuming the last Example, viz.

“and operating with 8 we have

1 Y o (W _ TY\| Ty
{5””%?“”(25““%)}2?

s oo nn

which reduces to a linear differential equation of the first
order for determining 8y, provided that we have

1 dy dy dy\_

Eliminating % from the given equation by means of this
there results |

(3

and we find on differentiating. this that it does constitute a
solution of the given equation. It is therefore a singular
first integral of that equation. 'We see that it agrees with
the result obtained the same name in the previous
Article, and the rest of the solution meed not be repeated.

,(§+m)g—zy—(l+w'):'y—%=0,

8. Upon Legendre’s theory, and upon its results, the fol-
lowing observations may be made. .

1st.” We learn from it that there may exist different
general forms of the solution of a differential equation of the
n® order, viz. the complete primitive involving n arbitrary
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constants, and general forms of singular solutions containing
fewer than n arbitrary constants. A solution y=r(x) of
unknown origin being given, we construct a differential equa~
tion for determining Jy, and, solving it, form the expression
for y+ 8y, and from the - number of infinitesimal arbitrary
constants it contains, determine the nature of that general
value of y of which the given value is a particular case.
Now we are not to infer from this that the form of y + 8y will
be the same as the general value of y in question. But we
may infer that it will be a form to which that general value
i3 reducible. And the actual reduction will be effected by
expressing the general solution (as is always possible) in a
form permitting its expansion in ascending powers of the
arbitrary constants, and in the expansion making these con-
stants infinitesimal, and rejecting all powers of them above
the first. In fact, if

y=f(, a, a,, ... a,)
be any general form of solution which, when we assign to
a,, a,, ... a, particular values (e.g. make them vanish) re-
duces to
y=¥)
then we shall have

y+0y=¥(e) + () b0, + (L) bor.e. + () 30,

the brackets denoting that after differentiation we make
a,, a,, ... a, vanish,

This is that limiting form of the solution which Legendre’s
method enables us to construct by the solution of a linear dif=
ferential equation; and the ground of the.sufficiency of his
method consists in this, that the infinitesimal quantities

8a,, 8ay, ... 8a,,
which are in fact the arbitrary constants of that solution, are

equal in number to the arbitrary constants of the general
unlimited solution, the nature of which is thus made known.
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2ndly. Legendre’s tests for differential equations of the
higher orders are in kind and effect analogous to the tests

p_o 41_
dy 7’ dap

for differential equations of the first order. They enable us
to decide whether a solution possesses singularity, not whether
it possesses the envelope species of singularity. The comple-
tion of Legendre's theory would consist in the discovery of
those further tests dependent upon integration which corre-
spond to ‘the test of Euler and Cauchy for differential equa~
tions of the first order.
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CHAPTER XXIV.
'ADDITIONS TO CHAPTER XIV,

- [Art. 1 was intended to follow Chap. x1y. Art:-2.]

1. As the condition of dependence of functions of two
variables is of fundamental importance in connexion with the
theory of ordinary differential equations, so the generalized
condition of dependence of functions of any number of vari-
ables forms a fundamental part of the theory of partial differ-
ential equations. This is contained in the following proposi-
tion.

Pror. 1. If u, u,,...u, are functions of z, =,,...2,,
but are as such so related that some one of them 1s expressi-
ble as a function of the others, or more generally that there

exists among them some identical equation of the form
F(uy gy eei %) =0,eerreecranenennens(l),

go that as functions of «,, #,, ...z, they are not mutually
independent, then, adopting the notation of determinants, the
condition

du, du,  du
'd_w:’ %:,"...o d—;:
du, du, du,
%:, d-;:} """ E‘ =O ..--'-..ooocaoo(2),
du, du, du,
&, & I,

is identically satisfied. Conversely, if the above condition be
identically satisfied, the functions w,, w,, ... %, are not mutu-
ally independent in the sense above explained.
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- First let it be noticed that the Proposition is but a general-
ization of that of Chap., 1. Supposing .U and « to be two
funetions of z and g, the condition of their dependence is
affirmed to be

v a7
dee?’ dy . —0
i d_’{ @G_ )— ’
|-de’ dy
i.e. it is the result of eliminating dzx, dy, from the equations
au
%dw+ dy 0,

duda: o+ E— dy 0,
and therefore it is
‘ dU du .dU du
de dy dy dw
as expressed in Chap II.
~ "We proceed to the general demonstration.

Let the first member of (1), considered as a function of
%, ¥, ... 4, be represented for brevity by F; 'then differen-
tiatmg, we "have

| Z—qul+dFd +.. +5Fd,,=0,

=0,

from which it follows that if du,, du,, ... du, , are equal to 0,
then is du, equal to 0; or, since u,, %, ... u, are functions of

&,y &y oo0 &, that if
du du, du
Zw—ldz +dx‘dx et da: 0
du, dz + * da, . da,=0
ZE s "+%‘ r 3),
e, du e
1 der, ""dw —~*dg, =0
Z det g J
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then is
du, du, du, _
d?,dx‘-l'—l da:,...+£ dr,=0..cc00verees oee(4).

Thus the last » equations, linear with respect to
- da,, dw,, ...dz,,

are not independent, and therefore by the theory of linear
V?uations the determinant of the system vanishes identically.
ow this is expressed by the condition (2).

It remains to prove the converse, viz. that if the condition
(2) be identically satisfied, the functions «,, u,, ... , will not
be mutually independent.

First, the n — 1 functions w,, v,, ... %, , are either mutually
independent or not mutually independent.

If not, then the » functions u,, u,, ... w, are not mutually
independent, and the Proposition to be proved is granted.

If u,, u,, ... u,, are mutually independent as functions of
&, X,y ... &,, they may be made to take the place of n —1 of
these quantities, e.g. «,, 2,,... 2, , in the expressing of u,,
1.e. we mag, by means of the expressions for u,, u,,... %, ,,
eliminate from that of u, the quantities ,, «,, ... #,_,, and so
express w, as a function of w,, u,,...%,, and z,. Suppose
this done, then the system (3), (4) will be converted into

du, =0, duy,=0,...... du, =0,
du, du, ' du, du, ,
az;dul-i- (—i;’du, cee +mdu,_,+d;;dx,— 0.

Now, the determinant (2) vanishing, the equations of the
linear system (3), (4) are not independent; therefore those of
the transformed system, as written above, are not independ-
ent; therefore the last equation of that system must be a
consequence of the others which manifestly are independent.
But from the form of that last equation we see that such can-
not be'the case unless we have

e Y §

de,
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- which implies that u, is a function of w,, u,, ..., , merely.
Hence the functions u,, u,, ... 4, are not independent, as was
to be shewn,

The first member of the equation of condition (2) is com-
monly called the functional determinant of w,, u,, ... u, with
respect to x,, &,,...Zye 'The proposition may therefore be
expressed as follows.

The condition of dependence or independence of any sys-
tem of functions of as many variables is the vanishing or
non-vanishing of the functional determinant of the system.

On account of the t importance of this proposition it is
desirable to illustrate it by an example.
Ex, Are the functions
x+2y+2, x—-2+32 2axy-axz+dyz— 22"
mutually independent or not ?
The equation of condition is
1, 2, 1
1, -2, ‘s =0,
2y—2, 2x+4z, —x+4y—4z
that is,
—4(—a:+:liy—4z)+8 (2y —2) —2(2x + 42) =0,

which is identically satisfied. Hence the functions are de-
pendent. In fact, representing them by u, v, w, we have

dw=u"—o"
[Art. 2 was intended to follow Chap. x1v. Art. 4.]

2. As it has been shewn that a primitive

| U= (V) cernirrisiennnnnns eressrere (1)
leads to a linear partial differential equation of the form

Pp+ Q=R .ccvssnrerenrniseiinranee (),
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provided that u =a, » =9, are integrals of the aystem of ordi-
nary differential equations .

dz_dy de :
B= G =G vervnnesans (3),

it is evident that we shall obtain a solution of the partial dif-
ferential equation (2) by constructing the system of ordinary
differential equations (3), deducing their general integrals

u=a, v=0,
and then constructing from these the primitive (1).

But the question arises, Will this be the most general soln-
tion of the partial differential equation given?

That it will be 80, may be shewn by means of the general
proposition, See Art. 1.

For let w = 0 represent a.ny solution whatever of the given
partial differential equation. Differentiating this with respect
to z and y, we have

dw | dw dw  dw
&t HP=0 Gt H1=Y
substituting the values of p and g formed from this in the
given equation, we have
-P d_a;+ Q a—y-‘i—R (E—O,

which must be identically satisfied.

In like manner, v =a, v=>% being solutions of the same
equation, we find

L du du du
"Pd—;-l-Qd—y-j-Rd—z:O’

S/ dv dv
P%+Q@+Rd—z,—_0, PRI

which must be identically satisfied.
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- Eliminating P, @, B from these three equations, it results
that the functional determinant of wyu, v, with respect to z, y, z,
will identically vanish. Hence w is a function of w and v,
and the equation w=0 is a particular case of -

F(u, v) =0y

which is thus shewn to be the general integral of the given
equation.

‘We are thus led to the following general Rule.

RuLe. To integrate the equation Pp+ Qq=R we must
Jorm the system of ordinary differential equations

. PTeER
deduce thetr general integrals in the form
u=a, v=>,
_ and, constiruct the eguation
F(u, v)=0.
This will be the general selution sought.
[Art. 3 was intended to follow Chap. x1v. Art. 5.]

8. The above theory may be extended to linear partial dif-
ferential equations of the first order, without regard to the
number of the vartables, -~ » '

First, the theory of the genesis of such. equations is ex-
pressed in the following proposition..
- PRoP. A primitive equation of the form
F () gy ooete) =0 ceenneninnnnnennns (1),

in which u,, u,,...u, are any given functions of the vari-
ables z, dependent, and =, @, . .. @, independent, will satisfy
the linear partial differential equation obtained by eliminating
dz, dx,, dx,, ... dz, from

du,= 0, du,=0,...... du,=0,
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expressed as total differential equations with respect to the
primitive variables, and the equation

dz —.pl(hl —p,dw’ oes _-p.dx.= 0'

Of this important proposition I propose to give two distinct
proofs. :

1st proof. Forming the total differential of the given
equation we have, on representing its first member by F,

dF , -dF dF ,
%;dul+ ¢-i_u,du' . th“du"_ 0.
Now this cannot be true for all forms of the function ynless
we have the separate conditions .

du, =0, ' du,=0,......du, =0,

Strictly to prove this, suppose F,, F,,... F, to be any n
distinct and independent functions of u, w,,...%,, and as
such, distinct and independent forms of P. Then the above

equation gives

dF, dF, dF,
E;:du‘-'- d—u:du, ...+@fdu,. = 0,
dF, dF, dF,

i sy =
d_u:du‘+ &, duy...+ T, du,=0,

seescece ®eccecccocee e0vecccccncne [XYTRTYYY 3

dF, . . dF, dF, ,
%;du"l'azdu’.oo'*'dtdu”—o.

Now F,, F,,...F, being independent, their functional
determinant with respect to w,, u,,...u,, does not vanish.
This again is the condition necessary and sufficient that the
above system of linear equations may be independent; and
this lastly being the case, their only possible soﬁtion will be

dul=0’ du’=0,....ndu.=0,

« a8 was to be shewn,
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- These equations in their.developed expression

du, du, du, du, ,
d—adwl+d;;dz,...+£dx.+d—zdz—0,
du, du

Ta:ldwl .......... eresececseseares .+d—;d2—0,
du,, dun —
L R — + 8 gy,

where X, X,,... X,, R are functions of the original vari-
ables. And now, forming the equation

pdx, + pde, ... + p,de,— dz =0,
and eliminating the ‘differentials, we find
Xp,+Xp,...+ X,p.=R
for the partial differential equation sought,

2nd proof. Differentiating the given primitive with respect
to x,, as contained explicitly in the functions «,, ,, ... u,, and
also implicitly in the same through 2, we have, on represent-
ing the first member of the equation by F,

dF (gzg, du,) L7 (du, ” du,)

du\dz, T &)t @\ Tz, TP )

dF (du, du,\ :
or
dF du, dF du dF du, dF
i, &, Ty @,y O, VT 0
since

aF du, dF &, dF du,_dF
du, dz " du, dz""" " du, dz  dz '
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Differentiating thus with respect fo the remaining inde-
pendent variables, we obtain finally the system

dF du, , dF du, +@d’u . dF
du, dz, Tu,dz, " @z, T P

dF du, , dF du, dF du, dF
T, o, Tuy dm, " T O, T B P

oooooooooooooooooooooooo #00000c0s0sccssvescccsosvense

dF du, dF du,  dF du, dF
T do,t Tu, gy dm, T TPt

0,

from whlch in combmatnon with the equation
dF du, dF du, dF du, dF

ool il il Ul vl et~
we can eliminate .
" dF dF dF @
dul, id;;’..o-.od—é‘:, d’.
The result will be
du, v, du
T, &, ' Pu
du, du, du, - [=0,
'—”, d‘_m‘;,ho.---dj.,p.
do o du |
ds’ dz dz
or, converting rows. into columns,
du, du du, du .
d_;i’ ﬁ. ...... d?: '
du, du,  du, du, |=%
B, Iz e
D1y PsreeersvPny =1
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which is the determinant form of the result affirmed in the
Pproposition.

. The second of the above forms of demonstration seems to
be preferable to the first, in that it rests only upon the consi-
deration of the one general form of the function F. I have,
however, given the two proofs, chiefly in order to illustrate
an important remark, wviz. that, in nearly all general re-
searches connected with partial differential equations of the
first order, two modes of procedure, the one involving the
use of differentials, the other that of differential coefficients,
may be employed, and that between the forms to which these
respective modes give rise, a certain law of reciprocity will be
found to exist,

The theory of the solution- of the partial differential equa-

tion
X p+Xp,...+ X p.=R

follows immediately from that of its genesis. If we repre-
sent by

U =@, U=0y,... U,=a,,

the integrals of the system -of ordinary differential equations
(2) a solution of the given partial differential equation will
be represented by (1). That this will be also the most gene-
ral solution may be shewn by the argument of Art. 1. For
if w = 0 represent any solution, then since

dw dw

dw dw
d_ml+p‘E_0’ ...... Eﬂ-l—-p”%:o,.
we find
dw dw dw dw _
‘X'd_“’;-I-X"En +X"E§,—,+R$—0’
from which, in combination with the corresponding equations,
du du du, du,
’X‘_:+X’d—x:"' +X"c7:v_,,+RE fO,
du, du, du, du,
X;d—:;,,-*-X’%, vee +X"d7,,+R7; =0,

B.D.E. IIL 5
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eliminating X, X, ... X,, B we obtain a result which ex-
presses that the fanctional determinant of W, Uy, ... Uy With
respect to the original variables is virtually 0. Whence w is
a function of w,, u,, ... %,, and the proposed solution is in-
i:luded in the one to which the above method of solution
eads,

That method may therefore be stated in the following Rule.

RULE. 7o integrate the linear partial differential equation

dz dz dz
.X;—‘—-I-X’%’... +.X;d-w-—.=.R

Jorm the system of ordinary differential equations
dr, dx, dx, dz

—Xf = —f." ose =TX~: = —R- ’
and deduce their general integrals

U =Gy Uy= Gy, oee Uy = Gy,
then
F(u,, uyy ... u,)=0

well be the general sntegral sought.

[The general observations were intended to follow Chap.
X1V. Art. 6.] :

Qeneral observations.

4. The relation which exists between a proposed linear
partial differential equation and its auxiliary system of ordi-
nary differential equations should be carefully studied. While
it is proper to say as above that the general integral of the
one requires the knowledge of all the integrals of the other,
it is also proper to describe that general intefral simply as
the most general form under which an integral of the auxi-
liary system can appear. If

U=, U=y, een Uy =0,
are integrals of that system, then
Fu,u,.ou,)=4
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is the one general form of an integral of that system, and
due regard being had to the arbitrariness of ¥, this is equi-
valent to

F(u,, ug, ... u,) =0,

5. The form which the auxiliary system assumes when
the given partial differential equation is deficient in any of its
terms should be noticed.

If X, =0, the auxiliary equation

s, do,
Xl XI
becomes, on clearing of fractions,
dx,=0.
And thus, if X, X,,... X, vanish, the given equation being

dz dz de _
| Xt Rt R X,
the auxiliary system will be
dx, =0, daw,=0,...ds,=0,
o,y _ 4%, _dx,_dz
X, X." "L -X

r+3
and the integrals of this system being of the forin

w=a, L=, T, =a,

F(w‘, ..... o Bpy Up gy eeeeee u“) =0,

This conclusion would follow also from the principle laid
down in Chap. x1v. Art. 2.

Linear partial differential equations in which the absolute
term is wanting, and which are therefore of the form

dz dz dz
‘X;d-x—t-*-X'E Xy +'X"d_a:,:=0’
' 5—2
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may be termed homogeneous. As in this case one of the
auxiliary equations is

dz =0,
the general integral will be
! Fu,u,...... Uy yy 2) =0,

u, u,,."...‘.. u,,_,‘ being found by the integration of the remain-
ing auxiliary equations

de, de, _d=,

'X: - Y’ cee = 'X: .
When X, X, ...... X, do not contain 2z, the solution is best
exhibited in the form

2= (Uyy Upyeuveee Uy ).

6. Every linear partial differential equation can be converted
into a homdgeneous one containing one additional variable.
For it is shewn in Art. 3, that if » = 0 be any integral of

dz dz dz
Xl%l'l-xsf‘g-z—a .-.+‘Xna—a—’;=X,
then is : d.
du o du du w
%’ld—xl+X,d—m;...+X,,&£+X3;—0,

a homogeneous equation with a new variable.

From the general integral of this equation, that of the
former one may be deduced by making = 0.

7. The solution of partial differential equations is some-
times facilitated by introducing a new system of independent
variables. The actual transformation 1s greatly facilitated
by the following symbolical theorem.

TrEOREM. If the partial differential equation

X, £+X,§i...+x g
x? -

.ld.z..l ‘ “da“:X
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be expressed symbolically in the form

Az=X,
in which 7 7
d
A=X;_:+‘X’d—.’l—,‘;."+x'(l7,"
then, if ¥, Yy eeeees ¥, be a new system of independent vari-

ables given in expression as functions of the old ones, the
transformed equation will be

dz dz dz
Ay) o +(Ay) 7= oo+ (Ay,) = X.
(B3 Z- + B3 g -+ (B9) =X,

For, regarding z as a function of y,, ,, ...... Yus We have
de_dedy,  dedy, | dedy.
dz,  dy, dz, " dy, dw,"" " dy, dw,’

o _ds dy,  do dy, | dz dy,,
dw,  dy, dx, " dy, dz,”"" " dy, dwx,’
whence, substituting in the given equation we find, as the

total coefficient of d—; , the expression
1

9, xY y,
X,Zw-'+X,d—ml....+X,£,

or symbolically, Ay,; and so on for the other coefficients,
The result then is

dz dz dz
By g+ By g+ (B = X

It remains only after calculation of Ay, Ay,, ...... Ay,, as
functions of z,, 2,, ..... .&,, to express these functions and X
in terms of ¥, ¥, vevvee Yoo ’

[It appears from the manuscript that an example was to
have been supplied here.] .o
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[The next Article may be considered supplementary to
Chap. x1v. Art. 10.] '

Singular Solutions of partial Diffsrential Equations.

- 8. Legendre’s theory developed in Chap. xxm1. for ordi-
nary, may be applied :zo without essential change to partial,
differential equations. Regarding the independent variable
2 a8 receiving an infinitesimal ¢hange 8z through infinitesimal
change, not 1n the values of the independent variables

but in the values of the arbitrary constants of the complete
or in the forms of the arbitrary functions of the general inte-
gral, and performing upon the given equation the operation
enoted by 8, we shall obtain a linear partial differential
equation for determining the general value of 8z corresponding
to any particular given value of z. If that linear equation be
of a lower order than the differential equation given, then the
equation expressing the value of z+ 8z will be a limiting
form of a solution less complete or less general than the com-
plete or general solution of the differential equation given,
and the given solution, formed by making the infinitesimal
constants in the limiting form actually 0, will be singular.

Conversely, to deduce singular solutions without the know-
ledge of the complete or the general integral, we ought to
construct the equations of condition for the reduction of the
equation determining &z to a lower order than the equation
given, and the most general solution of the differential equa-
tions of condition so formed, will be the most general expres-
sion for the singular solutions of the differential equation
given.

" Ex. © (pz—gy) g+ 4m2’(z —ap) =0,
_ in which :

_% _dz
P d.’l:’ g_dy'
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Representing the first member of the equation by F, we
have, on operating by &,

dF &8 dF &5 dF
dp dz " dg dy T @

and the conditions

82=0,

dF_,  dF

dp " dg

necessary to reduce the equation for 8z to a lower order give
(pz - gy) g — 2ma* = 0,

(px — qy) (px—3gy) =0.

=0,

From these we find
p=3miatyd, g=mlatyd,

definite and simultaneons values of p and ¢, which being sub-
stituted in the given equation lead to

z= 2m§m’y4,

and this, as it gives the same values of »p and ¢ as those
obtained before, will necessarily satisfy the given equation.
It is thevefore a solution, and from the nature of the analysis,
a singular one.

Legendre shews that this singular solution is also dedu-
cible from the general integral of the given partial differen-
tial equation. %‘hat integral is the result of the elimination
of a from the two equations

{¢ (@)} — 202 (a) + az — may =0,
(¢ (@) — az} ¢ (a) — 20 (a) + 2 =0.

To deduce the singular solution he supposes ¢ (a) to be not
simply a function of @, but a function of @ and of one or
both of the independent variables. He expresses the varia-
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tion of ¢ (a) derived from this new source by &, and operating
on the tﬁt equation with 3, finds ’

{2¢ (a) — 2az} 8¢ (a) = 0;
therefore ¢ (a) = ax.

Substituting this in the equations of the general integral, and
eliminating a, we find : :

z= 2m3a:‘y§
as before.

Legendre states his theory of the derivation of the singular
solutions of partial differential equations from the equations
themselves with great brevity, but still as a general theory.
And there is nothing in the statement that carries with it any
apparent restriction upon either the order or the degree of the
equations given. Until however we are in possession of a
perfect theory of the genesis of partial differential equations
we shall not be entitled to say that Legendre’s theory of
their singular solutions is a perfect one; for until then we
cannot even define, in a perfectly general way, the nature of
the operation denoted by &. .



(78 )

e next three Chapters all relate to the subject of partial
differential equations of the first order. 'The manuscripts do
not appear to have received their final revision from Professor
Boole. It is certain that he intended the contents of Chapter,
XxV. to form a part of the new edition; and it is highly
probable, althongﬁ not certain, that the contents of Chapter
xxvI. and Chapter XXVII. were also to be included.

The three Chapters are mainl derived from two memoirs
by Professor Boole, published in the Philosophical Trans-
actions.

_ The first memoir is entitled On Simultaneous Differential
Equations of the First Order tn which the Number of the
Variables exceeds by more than one the Number of the Equa-
tions : it occupies pages 437...454 of the Philosophical Trans-
actions for 1862.

The second memoir is entitled On the Differential Equa-
tions of D?namz'cs. A sequel to a Paper on Simultaneous
Differentia uations: it occupies pages 485...501 of the
Philosophical Transactions for 1863,

The first memoir was finished before Professor Boole had
seen Jacobi's researches, which are cited at the beginning
of Chapter XXVI; these researches indeed could only just
have been published. In his second memoir Professor Boole
describes Jacobi’'s methods, refers to his own already pub-
lished, and points out the nature of the connexion between
them.] o
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CHAPTER XXV.

ON SYSTEMS OF SIMULTANEOUS LINEAR PARTIAL DIFFEREN-
TIAL EQUATIONS OF THE FIRST ORDER, AND ON ASSO-
CIATED SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS.

1. THE term simultaneous is here applied to a system of
partial differential equations, to signify that in that system
there is but one dependent variable, the general expression
of which, as a function of the independent variables satisfy-
ing all the equations at once, is tEe object of search. All
linear partial differential equations of the first order being re-
ducible to the homogeneous form, we shall presuppose this
reduction here. Under this form indeed the problem actually
presents itself in Geometry, in the theory of partial differential
equations of the second order, and in Theoretical Dynamics.

‘We are sometimes led, in connexion with the same class
. of inquiries, to systems of ordinary differential equations
marked by the peculiarity that the number of the variables
exceeds by more than one the number of the equations. Such
systems are intimately connected with the former—stand
to them indeed in a similar relation to that which the
Lagrangean auxiliary system bears to the single partial dif-
ferential equation from which it arises. The theory which
-explains this connexion, and grounds upon it the method of
solution of both systems will form the subject of the present
Chapter.

Connexion of the Systems.

2. Prop.I. The solution of a system of simultaneous
linear partial differential equations of the first order may be
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made to depend upon that of a sistem of ordinary differential
equations of the first order in which the number of the vari-
ables exceeds by more than one the number of the equations.

The system of partial differential equations being reduced
to the homogeneous form, Chap. xx1v. Art. 6, let n be the
number of the equations, z,, z,,...... z,,, the independent
variables, and P the dependent variable.

Then from the n given equations determining
ap P ap
&) &) .’

we obtain an equivalent system of equations which, by trans-
position of its terms to one side, assumes the reduced form

- dP dP dP dP

IR P S R 2 o)
Z. +4, don +4, To, """ +4, Zr, 0
dP -, dP dP dP
Zw—’-l' A"aw:,-’-An__dzm ...... +A"_dx,+, =0 ),
dP dP dP dP
d-—m'-.-l-AMd Hl+A“EK’ ...... +.A”.El—"=0‘
Multiplying these equations by the arbitrary constants
WD VO .
respectively, and adding the results, we have
dP dP dP
Xlzw—; + X,E...... +X”%n
+ N4, +2A4,...... +A,4..) d-‘ii
. n1

+ Oy My e A0 A) B ... (2),
nir
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a single partial differential equation which, on account of the
arbitrariness of A, A, ...... A,, i8 equivalent to the system
from which it was formed. )

Of this equation the Lagrangean auxiliary system will be .
dz, _dz,  _dz, |

i W
dz,

p— fia 2 §
PR W TS W
- e . ceervenenn(8);
PV TS W T +2,4
whence, eliminating A, A,, ...... A, We have the system of

ordinary differential equations

dzo, — Ay dw,— Ay, ouoo— A, dz, = 0
Ay — Ao, — Ay, oA, pda, = 0 W,

oooooooo 400000000000 0c0ss00bnsctccsnncccnctoticee

dzo— A do, — Ayde, ...~ 4, dz,=0

These equations being included in the previous system (3),
any integrals , :

u=a, v=>0, w=e¢, &oc

of them will be integrals of it. Therefore u, v, w,... will be
values of P satisfying the partial differential equation (2).
For they will be the only values which can satisfy it inde-
pendently of A, A,,..cuee A.. Hence they will satisfy the
eqlllli\{)alent system (1), and the general integral of that system
will be

F(u, v, 10, 00) =0 cevvenraninnnnnes (3),

the form of F being arbitrary.

Thus the relation of the system (4) to the system (1) is the
same as the relation of the auxiliary system of a single linear
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partial differential equation to that equation. And the ground
of this relation is seen to be the same in both cases. The
one form necessitates the other. :

3. Instead of employing the above mode of deduéing
the auxiliary system, we might employ the following which
is practically more convenient.

Since any value P which satisfies the partial differential
equations determines P=c as an integral of the ordinary sys-
tem, the latter must be consistent with dP=0 in its de-
veloped form

dP dP dP
E;l'dwl-l-d—x.(i’l)’ ...... +mdxu'—0.
. Eliminsting 22, 42 4P

d-Tl’ E,m..dx

by means of the n given equations (1), we have

dP ‘
d"v*m (dxnﬂ - Audwx - 'Andzn ...... - .Aucl’c.)
dP
+ E; (d"tm - A“dxl - A,,dx, ...... - An’dxﬂ)
4P |
+ dTﬂ-H' (dzll-w - Alfdm! - A"dw' ------ — A"d’l,‘“) = O.
‘Whence, equating to 0 the respective coefficients of
P ap P
dw”-“ ’ dx”’ goescene dxm )

we have the system (4).

_ In the same way we can pass from the system of ordi-
nary to that of partial differential equations. From the equa-
tion dP =0, in 1ts developed form, we must eliminate a number.
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of differentials dx,, dx,, ... e to that of the given equa-
tions, and then equate to 0 coefficients of the remaining
differentials. .

4. Lastly, the formal connexion of the two systems should
be noticed. The partial differential equations being given in the
reduced form (1), the ordinary system may be constructed as

follows: For any differential coefficient, as %}E , in any

. Loy
column after the first, write the corresponding differential
dr,,,, subtract from this the sum of dw,, dx,, ...... d,,, mul-
tiplied respectively by the descending coefficients of that
column, and equate the result to 0. The system of equations
thus suocessiv&y formed will be the auxiliary system sought.

The transition from the ordinary to the partial system ma
be effected by the same rule, substituting only differenti
for differential coefficients.

. [It appears from the manuscript that an example was to
have been supplied here.]

Up to this point the theory of systems of partial differen~
tial equations is in analogy with that of single equations.
But here a difference arises. We do not know beforehand
what number of integrals a system of ordinary differential
equations, in which the number of variables exceeds by more
than one the number of the equations, admits.

The theory which removes this difficulty will be developed
in the following sections. It will be shewn that a system of
linear partial differential equations which admits of solution
by the assigning to the dependent variable a value which
satisfies all the equations in common, must either itself satisfy
a certain condition, or be capable of being developed into a
new but equivalent system which will satisfy that condition.
It will be shewn that when that condition is satisfied, the
auxiliary system of ordinary, is capable of expression as a
system of exact differential equations determining the inte-
grals sought.
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It will be found convenient to express by a single symbol
the aggregate of the operations to which the dependent vari-
able 18 subject in the expression of a partial differential equa-
tion. Thus the equation

may be expressed in the form
Az=0
if we assume
d d d

A=7t+w(—i.;+yd—.—'y’

Under this convention the following proposition is to be
understood. ,

5. Pror. II. If AP=0, A’'P=0 represent any two
homogeneous linear partial differential equations of the first
order, then will

(AA"—A'A) P=0
also be a homogeneous linear partial differential equation of

the first order, and it will be satisfied by all the common
integrals of the equations from which it is derived.

First, the equation will be linear. For, let z, y represent
any two variables whatever, or the same variable repeated,
out of the set 2, ....x,, and let 4, B represent any functions
of the variables «,....«,. Then A may be represented by a

series of terms of the form 4 % , and A’ by a series of terms

of the form B%. Hence (AA'— A’A) P can be expressed

by a series of terms of the form
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which, on effecting the differentiations, becomes

dBdP_ ,d4 dP
dzdy " Cdy dx’

the terms containing the second differential coefficients of P
mutually destroying each other. Hence the equation

(AA'—- A'A)P=0
will be a homogeneous linear partial differential equation of
the first order.

A—

The constitution of the coefficients of this equation is easily
determined. For suppose the given equations to be

.

' dP dP dP
A’dz +A'dw ...... A,% =0,
dapP dP dP
B‘d.l) +B’d ...... +.B,.%'~=O,
so that
d d , d d
A=A, s +A"dz,,’ A_Bld—a;l ...... +B,£,
then the equation .
(AA'—A'A) P=0
may be written in the form
dP dP dP
| A(B,Ex—J,B,d ...... +B,%
, dP dP . dP
N (A,dx A, ...,..+A,,E),

and, since terms igwolving second differential coefficients of
P will disappear, this becomes

(AB,—a'4)9E - Lra-a4)if .
'
+(AB,— AA.,.) d_.v:=
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We see from this that the form of the result is the same as
tf the A or A' from either equation operated only on the coeffi-
clents in the other equation.

Secondly, the above equation will be satisfied by all the
common integrals of the equations from which it is derived.

For, let ¢ = ¢ be a common integral of

AP=0 and A'P=0,
then
Ap=0, A'¢p=0.

Performing on these the respective operations A" and A,
oi)erations which involve only differentiation together with
algebraic processes, we have

(=]
A'Ap=0, ANG=0,
whence, by subtra,étion,
AA' — A'Ad =0,
or (AN — A'A) =0,

from which it appears that ¢ is also an integral of the
equation
(AA'—A'A) P=0,

as was to be shewn.

6. Pror. ITI. If by the above processes of reduction and
derivation we convert a system of partial differential equa-
tions into a new system, such that if expressed in the form

the condition
(Ad,—484) P=0

shall for each pair of equations be identically satisfied, then
the system of ordinary differential equations corresponding
to this new system will admit of reduction to the form of
exact differential equations, the integration of which will
enable us to construct the general value of P satisfying the
system given.

B.D.E. II. 6
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1st. Suppose the given system of n equations reduced to
the form (1), marked by the peculiarity that = of the differen-
tial coefficients appear only in successive equations and with
the coefficient unity. Then taking any two of those equa-
tions (we select the first two), we have

d d d
Al= d_m;+ A“d—a—:;; cevace +A".%.—+r,

d d d
Ag=d—x;+Amd—?n: ...... +.A,,..d'z'",

from the forms of which we see that the derived equation
(Aan - AsAl) P=0

" cannot contain either

dw,  dxs’

It can only, as appears from Art. 5, contain the differential
coefficients ,

ap  dp

Tz To
and must be of the form

dP dpP dP
B‘dx—m+B’c—la:_,,; ..... .+dex_,,+,.=0.

It cannot therefore be an algebraic consequence of any of the
equations of the system (1) from which it was derived. 1Tt is,
unless by the vanishing of B,,.... B, it present itself as an
identity, a mew equation algebraically independent. Com-
bining this with the former ones, we have a system of n + 1
equations admitting of the same reduction as to form fol-
lowed by the same subsequent process of derivation. And
the result of each of these completed steps is to convert the
system into one containing one equation more than before;
but containing in each of its equations one term fewer than
before. The process must then end either in.the genesis of a
gystem of partial differential equations such that the further
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application of the process of derivation of Prop. 1. shall only
lead to identities, or in the emerging of the system

dP dP dP
El=0, E.E_’=0’ ...... 'd—x:'—o

The latter supposition would imply that P is a constant,
The consequences of the former we proceed to examine.

" The final system of linear partial differential equations
will be of the same type (1) as the original system, but will
differ from that system in that » will be increased, and r
diminished by the same amiount. We shall therefore simply
state the form (1), only under the condition

(A&, - AA) P=0,

and with the altered values of » and ».

First, then, the common integrals of the new system will
be the same as those of the original system. This is evident
from Prop. 11. :

Secondly. If we write

m=n+r,

the first equation of the system (1) will be

dP dP dP dP
d_;;-}-And-;;-l.AdeM; ...... +Al,‘7x:—0,

and the auxiliary Lagrangean system of this will have m — 1
independent integrals :

U =0y Uy=1Chyruvere Uy =Cp sy
among which the n—1 known integrals (Chap, xx1v. Art. 5)

Lyg=0Cyy &Ly=0Cy Xp=0C,

6—2
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are included. And the general value of P sat{sfying the
above first equation will be ' '

P=F(u, ty.ccithy ).

The assumption P =z, would not satisfy the said equation,
for it would lead, on substitution, to 1=0. Hence we infer
that while the functions w,, u,,..... %,_, are independent with
respect to each other, they are also independent with respect
to z,, so_that the m functions w,, u,...... %, ,, &,, are mu=
tually independent in the sense explained in Chap. xx1v,

Let us now transform the equations of the system (1) after
the first by introducing w«,, u,,..... %,_,, @, as independent
variables. Those equations being

the result of the transformation will be (Chap. xx1v. Art. 7)

dP dP dP dP
(A,ul) %—l + (A,‘u,) (7172 ...... + (Agufn_l) m + (A’wl) dm_l = 0’

dP dP dP dP
(A,.u,) 3171 + (A”ug) a;" ...... + (A,,um_l) du—M + (A”ml) -g{;}:—: 0.

But P =z, being an integral of each of the equations of
the system (1) except the first, as appears from their forms,
we have

thus the last terms in the transformed system vanish. Further,
the coefficients of the remaining terms reduce to functions of
Uyy Ugy eenee. Uy, merely. For, considering the coefficient A,
we have

' (AnAs - AzAx) u, =0,
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which, since Az, = 0 reduces to

AAu, =0.

Hence A,u, must be a solution of A P=0, and therefore a
function of Uy Ugy venens %, ,. And so for the others, It
results therefore that the transformed system is

dP .. . dP ' dP
(A ‘71;; + (Agu,) Ez—‘; ...... + (A %,._,) a_u—M =0,

dP dP dP
(A,.ul) d—u; + (A"‘ll/’) d_u, ...... +(Anum-1) m = 0’

%,y U,y erees Uy, , being the actual independent variables of the
system.

But the transformation having involved no loss of gene-
rality, for a new system of m independent variables was
simply substituted for an old one, the condition

(Ad;— B0 P=0,
satisfied before, will continue to be satisfied in the'new sys-
tem represented symbolically in the form '
AP=0, AP=0,...... AP=0.

Any common integrals of this system will also be common
integrals of the previous system. KFor as functions of

Uy Ugy eenens Uy y

theff will satisfy fhe first equation of that system, and they
will satisfy the other equations, because the present system 1s
but a transformation of those. The converse is equally mani-
fest.

Thus a system of n partial differential equations contain-
ing m independent variables and satisfying a certain condi-
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tion, has in virtue of that condition been converted into a
system of n —1 equations between m —1 independent vari-
ables, and satisfying the same condition. This then is con-
vertible into a similarly constituted system of n — 2 equations
containing m — 2 independent variables, and so on till we
arrive at a final single partial differential equation containing
m —n + 1 independent variables. This equation has m — n,
that is, » integrals, and these are the common integrals of the
system (1).

But the system of ordinary differential equations corre-
sponding to (1) is in number », and is satisfied by all the
common integrals of that system. Hence these differential
equations must admit of reduction to the exact form.

7. We may deduce from the above investigation the fol-
lowing Rule. '

To integrate a system of simultaneous linear partial diffe-
rential equations of the first order.

RuLe. Reduce the equations to the homogeneous form
(1), express the result symbolically by

and examine whether the condition
(84,—-8,A) P=0

is identically satisfied for every pair of equations of the sys-
tem. If it be so, the equations of the auxiliary system,
Prop. 1., will be reducible to the exact form, and their inte-
grals being

u=a, v=0, W=0iu0us

the complete value of P will be F'(u, v, w, ...), the form of F
being arbitrary.

If the condition be not identically satisfied, its application
will give rise to one or more new partial differential equa-
tions. Combine any one of these with the previous reduced
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system, and again reduce in the same way. With the new
reduced system proceed as before, and continue this method
of reduction and derivation until either a system of partial
differential equations arises between every two of which the
above condition is identically satisfied, or, which is the only
possible alternative, the system

P

aP_y @,

1

appears. In the former case the system of ordinary equations
corresponding to the final system of partial differential equa-~
tions will admit of reduction to the exact form, and the gene-
ral value of P will emerge from their integrals as above. In
the latter case the given system can only be satisfied by sup-
posing P a constant,

Ultimately then the determination of P depends on the
solution of a system of ordinary differential equations reduci-
ble to the exact form. This does not mean that each equation
of the system is reducible to the exact form, but that the
equations may be combined together so as to form an equal
number of equivalent equations of the exact form. Generally
when we know this combination to be possible it is easy
to effect it, and best to endeavour to do so. We might how-
ever employ the method of the variation of parameters as fol-
lows. Supposing p the number of differential equations make
all but p +1 of the variables constant, integrate the reduced
system, and then seek to satisfy the unreduced system by the
same series of integrals with the arbitrary constants as new
variables. The successive integrations and transformations
of this method would amount to the same thing as those
upon’which the second part of the demonstration of Prop. 111.
rests®,

Lastly, given a system of ordinary differential equations
containing a superfluous number of variables without know-
ing how many integrals they admit, we must, supposing
P=c to be any integral, construct the corresponding system

*® It was thus indeed that the author was first led to that theory.
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of homogeneous partial differential equations satisfied by P,
and apply to them the foregoing Rule.

8. Ex. Required the integrals of the simultaneous par-
tial differential equations

dpP

apP . dP
T + (¢ + zy + 2) -+ (y+2—38x) T =0,

G ety —a) 5+ - G =0 |
Representing these in the form A, P=0, A,P=0, it will
be found that the equation
(AA,—~AA)P=0"
becomes, after rejecting an algebraic factor,

dP dP
& @

and the three equations prepared in the manner explained in
the Rule will be found to be

0,

dP - dP
7 + @ +1) 5 =0,
dP dP
@-I-y%:(),

dP dP
te g ="

No other equations are derivable from these. We conclude
that there is but one final integral.
To obtain it, eliminate

dp dP dP
=’ Ay’ &
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from the above system combined with

dpP dP dP dP
%@+@dy+$dz+'ﬁ

dt=0,’
. . dP .
and equate to 0 the coefficient of Z the result. We
find ’
~ dz — (t + 3a") dw — ydy — wdt = 0,
the integral of which is

Y

3
— —L ———= e
z—uxt ==

An arbitrary function of the first member of this equa-
tion is the general value of P. :

[It appears from the manuscript that another example was
to have Eeen added here.]



(9% ) | [cH. XXVI.

CHAPTER XXVI.

HOMOGENEOUS SYSTEMS OF LINEAR PARTIAL DIFFERENTIAL
EQUATIONS.

1. THE theory of homogeneous systems of linear partial
differential equations in which when expressed in the sym-
bolic form

AP=0, AP=0,.....A,P=0......... ),

the condition
(A‘A, — AjA‘) P = 0 ..................... (2)

is for all combinations represented by ¢ and j satisfied in
virtue of the constitution of the symbols A;, A,, forms the
subject of important researches by Jacobi (Nova Methodus...
Crelle’s Journal, Vol. LxX. p. 1). The following are the most
important of his results.

1st. An integral of any one equation of the system bein
found, other integrals of the samesystem may be obtaineg
without integration, by a process of derivation founded upon
the condition (2).

Let ¢ be an integral of the first equation of the system.
Then is the equation

A$=0
identically satisfied.

Also the condition (2) being satisfied in virtue of the con-
stitution of the symbols, we have

(Ady— AA) ¢ =0;
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and in particular, making ¢ =1, and separating the terms,
AALp—-AA$=0,
which reduces by a prior equation to
AAp=0.

It appears from this that A;¢, if it do not reduce to a con-
stant, 1s an integral of the first equation A,¢=0, and, if it
prove to be not a mere function of ¢, a new integral.

This process may be repeated ufbn the new integral with -
a similar alternation of results. It will be evident from this
that if we confine our attention to the two equations

\ AP=0, AP=0,
M;(lll suppose, as before, ¢ to be an integral of the first, then
W .
A2¢’ As (A2¢)’ A, {An (As¢) }7 o
or, as these may be expressed,
Ae‘i” A:‘i’: An"ﬁ: oo

be also integrals of the first equation; and this process of
derivation may be continued until we arrive at an integral
Ag*¢ which is not independent, but is expressible as a func-
tion of prior integrals

Ad, Alp,.....Ar,

and, sooner or later, such a result must present itself, since
the number of independent integrals is finite.

It is further seen that the most general symbolic form of an
integral derivable from the root integral ¢ 1s

AFAL......A 4,
&, BBy eeese. p, being positive integers.

. The above remarkable theorem was in some degree antici-
pated by the researches of Poisson,
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2ndly. Jacobi shews how by the aid of such derived in-
tegrals of the first equation of the system a common integral
of the first and second equation may be found, and how from
this integral and its derived series a common integral of the
first three equations of the system may be found, and so on,
until a common integral of the entire system has been as it
were built up out of previous integrals of less general appli-
cation. :

Let ¢, ¢, ¢, ...... ¢®-D represent a series of independent
integrals of the equation A, P=0, of which ¢ is the root in-
tegral, and the rest are derived from it by successive applica-
tions of the operation denoted by A,, so that

¢ =Dy, ronr. GED = Ap-1¢;
also let As*¢ be not a new integral but a function of
by &, eurers G-,
Now ¢, ¢, ...... ¢~ being particular integrals of A P=0;
the function F'(¢, ¢/, ...... ¢=-D) will also be an integral of

the same equation trrespectively of its form. Let us inquire
whether the form of the function can be so determined as
to render it also an integral of the second equation A;P =0,

‘We have then to satisfy the equation
AF (D, ¢, ¢e-1) =0.

By the principles of the Differential Calculus this equation
assumes the form ’

dF . . dF .y _OF
Aa¢d'$+A2¢ E(—p:'l‘--_---- +As¢“‘"”W—T)= 0.

But Ay = ‘ﬁ, A:¢' = (I)", ...... Ayp#-2 = ¢‘l‘-"1); =

lastly, A,¢®-? may by hypothesis be expressed in the form
F (D, yennene =), %hus the equation to be satisfied is
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dF ., dF _y dF
¢7I$+¢ d_¢—,+.“'n'-k¢w nm
: dF
+f(4>, ¢', ...... ¢‘F‘1’)W=O,

a linear partial differential equation of which the auxiliary
gystem is

db _dp _  _dged_  dgeod
F T T T T G o) O
Now the integration of this system may be made to depend

upon that of an ordinary differential equation of the (u— 1)%
degree between the two variables ¢®*-% and ¢.

For we have
ag _ ¢ dge-d_gun
a s = ¢—, g esesee —d-qs—- = —¢,—«,
dg¢vd_f($ ¢,..... o)
23 ¢ '
Differentiating the last equation with respect to ¢, ar(lg ‘;oftel?d-
“dgt

terms of the variables ¢, ¢, ...... ¢®=1,  Proceeding with
this in the same way and continuing the process we shall be
able to express the series of differential coefficients

d¢0‘-1) d’¢0‘-- 1 du—1¢(#-l)

ing to the former ones, we shall be able to express n

d¢ ’ _d$2- PEXLEXRY W
in terms of ¢, ¢,.....¢*"V., From these u—1 equations,
eliminating ¢, ¢",..... ¢+-9, we shall have a final equation

between
- dge-1 dr-1ge=1
-1
B gy S T

that is, a differential equation of the (u — 1)* order between ¢
and ¢®-, ~
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The complete integral of this equation will be of the form
PN =F (¢, ;) Cayeeee Cu-t)-

Diflerentiating this u—2 times in succession with respect to
&, and continually substituting for the differential coefficients
of ¢#—1 their values as before assigned in terms of

b, P, eeenen @D,
we shall have a sistem of p—1 equations connecting the
above variables with the constants ¢,, ¢, ..... Cu-1- Finally,

solving these equations with respect to the constants, we shall
possess the integrals required in the form

.................................

Foa(, dyeeeee Pe-V)=c,1,
and each of these will be a common integral of the first two
equations of the given system (1).

[On the back of a page of the manuscript the following
paragraph occurs, which scems to have been intended as a
simplification of the preceding argument which begins with
“The complete integral.”]

Suppose that a first integral of the equation can be found.
Its form will be

-t d¢(#—1) dn—’¢(ﬂ-—" _
F(¢’ ¢( )’ W’ ...... W)-—O-

Substitute in this for the differential coefficients of ¢«
their values before assigned in terms of ¢, ¢', ¢”,...¢*, and
we have an integral of the system (3), and therefore a com-
mon integral of the first two equations of the system (1).

[We now return to the place at which we inserted a para-
- graph.]

Just in the same way Jacobi deduces a common integral of
the first three equations of the system (1), For representing
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any one of the first members of the above system by 4, and
deriving thence the new independent integrals Ay, AlY,...
he substitutes an arbitrary function of these for P in the
equation .
AP=0.

It is evident that the solution of the partial differential
equation so found will again be reducible to that of an
ordinary differential equation between two variables. And
iasio the process is carried on till all the equations are satis-

ed. ‘

2. The above remarkable process was developed by Jacobi
in connexion with the theory of non-linear partial differential

uations of the first order. In that particular connexion it

mits of certain reductions tending to diminish the order of
the differential equations to be integrated. But these do not
affect the general principle of the method. It was in this
special form that the theory of the solution of simultaneous
linear partial differential equations originated. Jacobi does
not consider the theory of equations in which the condition
(2) is not satisfied; but the (Lnguage in which he refers to
the condition shews that he had speculated upon the general
problem—and it is difficult to conceive that he should have
meditated upon it and not arrived at its complete solution.

[The manuscript here gives the first two words of
the passage from Jacobi’s memoir which is quoted in the
Philosopkical Transactions for 1863, page 486.]
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CHAPTER XXVIIL

* OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF THE
FIRST ORDER.

1. 1IN treating the present subject we shall first consider
that class of non-linear partial differential equations of the
first order which involves two independent variables,  and
then proceed to the general theory. The reason for this
procedure is that the particular theory, though of course in-
cluded in the general ome, rests upon a somewhat simpler
basis, and it was in fact developed by the labours of
Lagrange and Charpit long before the general theory was
known. The latter we owe to the independent researches
of Cauchy and Jacobi.

[Here the manuscript refers to the matter contained in
Chap. x1v. Arts. 7 to 12 inclusive; and then passes on-to
the general theory.]

General Theory.

2. Given an equation of the form
2=¢ (@, Xy oor Ty @y, Ayy v Q)

the number of arbitrary constants a,, a,, ... a, involved being
equal to the number of the independent variables z,, ,, ... «,,
we obtain by differentiation and elimination of the constants
a partial differential equation of the first order. Of this the
proposed equation is said to constitute a complete primitive.
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The form of the above process: which if seems best, as
throwing light upon the inverse groblem of deducing the
complete primitive from the partial differential equation, to
employ, is the following. Let the given primitive, solved
with respect to one of the arbitrary constants a,, be presented
in the form : S

S (=, cer Tuy 2y Gy oo a,)=a, ... (1),

Differentiating with respect to each of the independent vari-
ables we have a system of n equations of the forms '

Fo @,y eoe Tay 2, Pyy gy -0 @,) =0 \L

S (Zys eoe @ay 2, Pry Qgy oee @) =OJ

These n equations enable us first to eliminate the n—1
constants @, ...... a,, and so deduce the partial differential
equation sought in the form . o

F"l(a:r,...w,,, z,pl,:...p,.)=0 cirerranenes 3);

secondly to determine the n» —1 constants as functions of

Zyy oer Tny 2, Pyy -+ Py iD the forms

Fy (2, ooe Ty 2, Pyy v Pu) =0

Fy(@y, ... Tay 2 Py ooe P) =0 |

As the system formed of these m—1 equations, together
with the previous one, is merely another form of the system
(2) obtained by directly differentiating the primitive, it follows
that if from these equations we deduce the values of p,, ... p,
as functions of «,, ... z,, a,, ... a,, and substitate thém in the
equation ' '

dz=pde +pde,+ ... + p,dz, ...... ceeeen (8),
they will render that equation integrable, and its integral
will be the complete primitive (1), the constant ¢, being re=
gained by integration. ; CL
B.D.E. II, 7
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Examining the system (3), (4) we see that the first mem-
bers of all the equations which it contains are functions of
X,y «os Tny %, Pyy +++ Pny While the second members are con-
stants. The question then arises, What mutual connexion
exists among these functions in virtue of which they yield
values of p,,... p., Which render the equation (5) inte-

. grable?

The answer to this question must involve the entire theory
of the solution of partial differential equations of the first
order, so far as relates to the determination of a complete
primitive. Given a partial differential equation of the form
(8) it is evident that if we can construct a system of associated
equations (4) possessing the character above described, the
final value of 2z obtained by integration of (5) will both
satisfy the given equation and contain the requisite number
of arbitrary constants. It does not follow from this that
it will be the only complete primitive, but it will be a
complete primitive.

3. The relation sought is expressed in the following
Proposition : '
ProposrTiON. If
F(x, ... Xy 2, Py, ... Pu) =a,
D (@), .v0 Tuy 2, Py, oee Pa) =b
represent any two out of a system of n independent equations

such that the values of p,, ... p, thence determined would make
the equation

dz=1’1dxt+?n 2t eee +p,.¢lz..
integrable, then the first members of these equations betng
represented for simplicity by F and ®, the condition
dF dF\d® dF (dD ad
() o (@ r @)

the summation extending to all values of 7, from 1 to n inclustve,
will be satisfied vdentically.
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Recii)rocally, if the above condition be satisfied identically
Jor each binary combination of functions in the proposed system
of equations, and tf these functions be tndependent, then the
values of p,,... Pa, a8 functions of x,, ... &, , 2, which they yield,
will make the equation ‘

dz=p dx +p,dx,+ ... +p.dx,

tntegrable.

It will be convenient to begin with the particular case in
which the proposed equations do not explicitly contain 2, the
particular pair to be considered being represented by

F (@, ... @y Py, o po) = 6,
D (@) 000 Tpy Py +oo Pu) =0

Differentiating with respect to ;, and regarding p,, ... p, a3
fanctions of the independent variables, we have

ar v, | F
d-"’s+dP: d‘z"+m +d1’- L (e),
d®  dP dp, a® dp,

%‘4'3—171 E+n.+d}?n da:‘=0’

to which we may give the form
4F _ _ s dF dp,
dxg - 1 d_pj dm‘

............ (XTI X X (7)’
o _ _ d dp,

dm " dpy da,

the summation with respect to j extending from j=1 to j=n»
inclusive.

From the first of equations (7) multiplied by %? subtract
3
7—2
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the second multiplied Aby Z—ZPE, and sum the result with respect
i .

to ¢ from =1 to ¢=n inclusive. We have

(s _dr @)
¢ dx; d]k dPt dx;

" The expression under the double sign of summation in the

second member vanishes when ¢=j; we may therefore re-
strict the summation to unequal values of ¢ and 5. Now-
as for any particular combination of values, e.g. 2, 8, there
would exist in the completed member both the terms cor-
responding to ¢=2, j=3, and those corresponding to j =2,
©=3, it is evident that if we employ the symbol 3;; to denote
summation with respect to different combinations of ¢ and j,
the second member of the last equation may be expressed in
the form

¥\dp, dp; dz; dp; dp; dz,
R d® dp, dF dd dp;)

B i, doy 0 I da)”

ar do_ar dv) @_i)
or 2 {(dp‘ dp; dp; dl’t)( ’

dx;  dx,
so that the equation (8) becomes
5 (ﬁ e _dF ‘?E’)
‘\day dp; dp; dux ) }
—_3 {(@@_@df)(@&_@)} ©)
) o (4 dp‘ dpj, d_pj d_p‘ dxj ] Ad?v‘ e 7. .
The number of terms of which the second member éx—'

presseé the sum is thus nin=1) , and it will be observed that
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23 to any particular term it makes no difference in what order
the numerical values of < and j are assigned to these quan-
tities; e. g whether for the combination 2, 3 we make =2,

J=38,0r 1=3, j=2; but we must confine ourselves to one
order.

Now when the equation
dz=p,dz, + p,dzs+ ... +pade,

is integrable in the manner here supposed we have for all
combinations of ¢ and 7,

dp; _ dp;
dw’ dx‘
All the terms in the second member of (9) therefore vanish,
and we have
s, (dF d® dF d(I)) =0

7] dp( d‘p‘_ d:c

This is the direct form of the Proposltlon under the parti-
cular limitation supposed.

. As F, ® represent, under the same limitation, any two of
the first members of the n equatlons (8), (4), which determine

DiyeePny there will ex1st

equations like the above,
Itis nsual to employ for brevity the notation o
dF d® dF do
%554 e
and this being done the above system of equations expresses
the "(Ll—) Junctions of the form [FF]] as linear homogeneous

JSunctions of the n_(n__) quantities of the form Z—Zf—-g—‘:
5 (1

It is hence that the vamshmg of the latter series of quantltles
secures the vanishing of the former.
The converse truth will therefore be established by shewmg

that the ™" > —1) quantities of the form %:‘ Z::’ are, when
. i’ 3
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F,, F,,... F, are independent with respect to p,, p,)..: Pn,

n(n—1)

expressible as linear homogeneous functions of the 3

functions [FF}]. ‘
To avoid complexity of expression I shall establish this for

the particular case of » =3, and shall shew that the reasoning
is general,

The functions F,, F,, F,, being independent with respect
to p,, ps, Py the determinant ,

dF, dF, dF,
dp,’ dp,’ dp,
dp,’ dp,’ dp,
dF, dF, dF,
dp,’ dp,’ dp,

does not vanish. This determinant we shall denote by A.

In (9) writing for ' and ® first F, and F;, secondly F; and
F,, thirdly ¥, and F,, we have on cflanging signs the system

dF, dF, dF, dF)\ (dp, dp
~[FF1=(2"2 228 _%7s 008 (Tl _ Tl ) g .,
LA (dp. dp, dp, dp,) (dw dw,)+

8

dF, dF, dF, dF)\ (dp, dp,
—[FF =% &2 _ %Ly 54\ (9Py 9Py, 10).
[£:F)] (dp, dp, dp, dp,) (da:, de, (10)
_ _ (%5, dF, _dF, dF) idp, _dp,
[EF’]_(d.ps dp, dp, dp’) (diva de, _".
az,

Multiply the first equation by -Z—F—‘ » the second by -2, the
Py | dp,

third by g_', and add. Then
1 .

dF, . . dF, dF, _ A (dp, _dp,
— g IRl = X RE) - 2 (FF] = A (- 22),
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whence as A does not vanish we have, on dividing by it, the

function Z‘% - % expressed as a linear homogeneous function
8 3
of [FF], [FF), snd [FF).

In like manner multiplying the equations by dF, ) aF, , dF,
dp,’ dp,’ dp,
respectively, and dividing by A, we obtain dl;; —-‘7‘;—‘ as a

similar linear homogeneous function, and lastly,lmultiaplying

.d_F'1 d_l’; "11_'18 d edi bef btai
y dp,’ dp,’ dp,’ and proceeding as before, we obtain
dp, _dp,

s, dz, as a similar linear homogeneous function.

From all which it follows that when [F,F, [F.F], [F.F]
vanish, then .

ap, _dp, dp, _dp, dp, _dp,
dxﬂ d‘vl, (l.’ﬂ‘ dx&’ d‘ct d‘tl"

will vanish also,

The reasoning is general in its nature. If F,, F,, ... F,
are independent with regard to p,, p,, ... p,, the determinant

ar, 4,
dpl PEXEEER) E

............ v = A e (11),
G5 B '

does not vanish, This determinant is from its constitution
as a determinant linear and homogeneous, not only with
respect to any row or column of elements, but also with
respect to the possible binary combinations which can be
formed of two rows or columns, ternary out of three rows or
columns, &ec. provided that these combinations are themselves
of the form of determinants. In the language of the theory
such combinations are called minor determinants. Hence if
we construct the system of. equations represented by (10), and
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observe that the coefficients of any particular term of the form
dp.._ dp;
dxj dil';
minors to the general determinant (11), it will be plain that
the equations can by multiplication and addition be brought
to a form in which the coe(%cient of that particular term will
be A, At the same time the coefficients of all the other

terms of the form %:f —‘—jl% will vanish. For a little atten-

tion will shew thatjthey ‘will ‘be what the determinant A
would become on making two of its columns or rows of ele-
ments equal, and therefore will be identically equal to 0.

in the several equations form a system of such

Thus thé Proposition is generally esfablished for the case
in which 2z does not explicitly appear in the functions

‘When z does appear in those functions the equations (6)
will be replacéd by ‘ '

dF dF dF dp, dF dp,r_
d—x"l'_p;E‘l“Jﬁl‘ d‘x‘+',’"'+(—i}7ﬂ E;‘-O,
@ de dbdp  dDdp

ae, TP dz Y ap, dx, Tt dp,

from which it is seen that the theorem above established will
only need to be changed into the form employed in the state-
ment of the general Proposition,

As the above is one of the most important propositions in
the entire theory of Differential Equations, it may be desire-
able to illustrate it by examples. :

[There are no examples in the manuscript.]

4. 'We resume the general theory.

The integration of non-linear partial differential equations
may be effected by two distinct methods, Aboth}r_es@ing. upon
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the ground of the above Proposition. The first of these
methods, originally established by a different analysis from
that which will here be employed, was discovered by Cauchy
(Eaercices d’ Analyse), and rediscovered by Jacobi (Crelle’s
Journal). The second method, discovered by Jacobi at a
later period, forms the subject of his posthumous memoir,
Nova Methodus...... :

L

Cauchy's Method.

We will, as before, begin with the case in which z does
not appear explicitly in the proposed partial differential equa-
tion, which we shall represent in the form

S N R Ly PyyoereePa) =0 erinnninnnnn. (1).

We have seen that to find a complete primitive of the
equation it is necessary and sufficient to construct a series of .
equations

F (@) ceeee @y Pryeeeee ) =
ceerereerrenneneerernesrnnre b, @),
F(®, 0evee Ty Pyyeeeee Po) =0,
such that not only shall the conditions
. [FE]=0,.... [F,F]=0.............. (8),
connecting the new functions F,,..... F, with F,, be identi-
cally satisfied, but also the series of conditions : v
[FoF]=0 i (4),

F, and F, representing any two of the new functions re-
ferred to. R :
The first of the above series of conditions amounts to

this, that 7, ..... F, must be integrals of the partial differen-
tial equation ’ '
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It is the peculiar aim of Cauchy’s method to determine the
integrals 80 as to cause the second series of conditions to be
satisfied also. And it is shewn that this will be attained if
the integrals of (5), which form the first members of (2), are
such that the particular values which p,,.... p, , assume when
. is made to receive any constant vafue, as 0, are differential
coefficients with respect to ,,..... #,, of any single function
of those variables, the form of which may be arbitrarily
assigned.

The necessity of this condition is obvious. If the general
values of p,,..... p, are differential coefficients of a function 2
with respect to «,,.....2,, then the particular forms which

Dys +ese Pu, BSSUME When x, receives any constant value are
" simply differential coefficients with respect to «, .....z,, of

what z becomes under the same circumstances. To prove its
suffictency we must shew that when it is satisfied the condi-
tions represented by (4) will be satisfied also.

' Since F, and F, are integrals of [F,P] =0,
[FF]=0, [FF]=0uvrerereunnn. (6).

Also, since if in (1) and (2) we give to x, a particular con-
stant value, as 0, and then in (2) regard p, as a function of

LyyeeeeeBayy Pryeeces Pan
determined by (1), the system (2) will virtually contain only
LyyeeereTpyy PrrecosePuyy

of which p,,.....p,, are differential coefficients of a single
function with respect to z,, .....%,_,, it follows from the pro-
position of Art. 8, that any two functions F, and F, will
satisfy mutually the condition , :
si=n-1(4F, dF, _dF, E)= 0
t=t (dwt dp;  dp; dx, ’

the differentiations having reference to

Lygeeees Ty g9 Pryesees DPuys
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explicitly as the{‘ appear in F, and F,, and implicitly as
involved in p,. Thus the developed form of the above equa-
tion is

the forms of ap. and dp, being determined from (1).
da; dp;

Performing the multiplications, the above equations will be
reduced to the form
gi=n-1(dF, dF, _dF, d_l".)
= \d"”t dpy dp; di

+ dp 2‘-1 (dx‘ dp‘ dp‘ dx‘)

_9F, si=n-1 (9p, A, _dp, dF) _
&, S0 ( )_o....(7).

Bat from the form of the total differential of (1) we see that

dF, dF,
dp,__dz,  dp, __dp,
dz,~  dF  dp ﬁ

dpl dpn ’

Hence

(=1 (dps IF, _ dp, dF,
== (da:‘ dp, dp; d‘”t)

-1
(3B stz (3F 44 B,
dpa dax, dp‘. dp; dz,
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Now since by Art. 3

5t dF, dF, dF dF)\ 0, '
b= l(dw dPs ch de—
we have

Si=n- 1.(dli' dF, dF dF)

“i=1 ==

dx‘ dp¢ dp‘ dw‘
oo (9 _andn),

dzx, dp, dp,, de,)’

therefore

si= (dp,. g'_ dp, dF, )
1" dx; dp; dp; da;

dF)" dF, dF, dF, dF, )
(dp.. (dw dp.. dp, dz
In the same way

sizy (02 4B _ . 4B

=1 \dw, dp; dp; dx

dF, )" dF, dF, dF, dF)
(dp,, (da: dp,  dp, dx,
The substitution of these values in (7) gives

von_s (dF; dF, dF. dF)
i=1 (d:c‘ dl’t dp; dx,

() o)

S EEE D)
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o stz (U 4R _dE dEy
- =1 (dwi dpi  dp; da
L dF. dF, _dF, dF, _
dzn dpu dpn dmu—
sieg (U 4B _dE dE)_,
*. 2z B, )"
which is precisely the equation
' [F.F]=o.

We see therefore that to solve the partial differential
equation

0,

F (@) ceers@py Pyyeeees p) =0,

it is only necessary to construct the linear partial differential
equation ‘

2(@ b _dF, dp)_,
i=1 dm‘ d_p‘ d.p; d:v; -

and to obtain # — 1 independent integrals of this
F,(z;,, ey Pryeses Pp) =0y,

.................................

F (@,ynee @y Pryeeenn p,) =0,y

such that if we determine from these conjoined with the given
eqiiation the values of p,,....p,, then those of p,.....p.
shall, when z, is made constant, be the partial differentia
coefficients of one and the same function of ,,..... z,, with
respect to these variables in succession.

" Now provided that we can find all the integrals of the
above partial differential equation the particular determination
required may be effected in the following manner.

The Lagrangean. auxiliary system consists of 2z —1 ordi-
nary differential equations

dz dz, d d
.W:,,,,,:—Wn = = eeeee = .. 8 .
— i .., -_——1 1 1 ( )
. dp, dp, s dax,
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These admit of 2n — 1 integrals, one of which will be ¥, =¢,;
and this will agree with the given equation if we make ¢,=0.
‘We have therefore, besides the particular integral F, =0,
2n — 2 integrals of the form

Py (Zys eoe Ty PyyoeePa) =6 }

------------------------

¢M (wn cee Tay Pn-"]’n) =Cgpa

Now suppose it required to find a value of z as a function
of z,, ... x,, which shall satisfy the given partial differential
equation, and shall reduce when «, =0 §0r any numerical con-
stant) to a particular given function of =, ..., ,, which we
will represent by ¥ (x,,... 2, ). Then on the assumption

that z, =0, we have first the given equation
2= (Tyy ee Ty) eoenneeiinninnne . (10),

secondly the derived equations

p= dyr (x:;é;l..,m,,_,) ]
...... SR ¢ § ) X
¥y (z,,...2,_) J
Pna= dx,_,

Make in the 2n—1 integrals @, =0, and suppose at the
same time ,, ... &, ,, 2,,...Pn., t0 receive therein the same
values as in the above derived equations., Then from the
3n—2 particular equations which we thus possess in the two
systems united (particular because under the assumption that
z,=0), we can eliminate the 2n—1 particular values of
ZyyeeeToyy PyorrPnyy 80d S0 Obtain 7 — 1 equations among the
constants. These express the conditions which are necessary
and sufficient in order that the values of p,, ... p,_, thus derived
from the integral equations may, when x,=0, agree with the
values assigned in (11). Accordingly if we substitute in these
equations of condition for c,, .. .cy,_; the general values¢,, ...y, ,
we shall obtain » — 1 equations between z,, ... z,, 2, ... Pus
which will at once be particular integrals of the system (8),
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and will possess the property that the values of p,,...p, , which
they in conjunction with ¥, = 0 give will when z, =0 reduce
to the values given in (11). Hence these values with that of
. derived from the same equation will make

dz —p do,—.....— p,dr,=0

an exact differential equation. In the integral of this it will
only remain to determine the constant so as to make the value
of z agree with that given in (10). All the conditions will
then be satisfied. :

‘We may collect the results of the above investigation into
the following Rule:

To obtain an expression for z as a function of the inde-
pendent variables «,, ... @,, which shall satisfy the partial
differential equation

F (2, 00 @y Pyyeee p) =0,

and shall when «, is made equal to 0 (or to any numerical
value) reduce to a given function of ,, ... «,_,, which we will
represent by ¥ (x,, ... @,_). -

" Rurk. Construct the linear partial differential equation
stz (IF 40_dF dP)_
i=1 (dzs dpi  dp; dx;)

and forming its auxiliary Lagrangean system deduce its in-
tegrals

$y=Cpseee Pan1=0Csuy
in addition to the known particular integral F'= 0.

Between the above integrals and the equations

d a:l,...a:,,_,- ar (e, ... 2,,)
p,=i(—W——2,... Pn =_‘£’_%;__}_,

eliminate, after making «, =0, the quantities .

LYy oeela sy Pryoee Pruoys
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In the resulting = — 1 equations replace

¢ by ¢2’ ooe Cony by _4’2-1’

and we shall have a system of equations which with #=0Q
will determine values of p,, ... p,, which will render

dz — p,dx, — ... — p,dzx,

an exact differential. The integration of this will give the
integral sought.

In the case in which the given partial differential equation
is of the form : ~
F(2,, ..o@us 2y Pry +-Pa)=0,

z being contained expliéitly, the linear equation to be solved is

—a (14F dF\dP dF (dP aP\| _
5=1{(%;*?‘$)@‘3é(%”‘9} =

and the argument by which it is shewn that the-integrals of

this to be employed in conjunction with F'=0 for the deter-

mination of p,, ... p, need only be so conditioned as to make

Py» -+ P, differential coefficients of one and the same function

of z,...x,, when x,=0 is in character the same as that

. already developed in the present Article. }t is only necessary
d

. - o dF
to substitute in its exposition o for pr and so
for the other functions, '

- ‘But as the auxiliary system

de,  _ dw, _ dz
—dFm T TdR T dE T dF
dp, dp, “Pdp T T,
a , d,
. =”—£7?= =ﬁf’, ...... (12)
&P &, Pz

virtually includes the equation
dz —p,de, — ... —p,dx,=0,
the ultimate expression of the Rule will be as follows :
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To obtain an expression for z as a function of «,, ... z,
which shall satisfy the equation

F(@,y oo @0y 2, pyy ooe p) =0,

and shall when , is made equal to 0 (or to any particular
constant value) reduce to a given function v (z,, ... @) of
the independent variables «,, ... ,_,.

RuLE, Let :
¢,=C,, ees ¢,‘= Con *
be the 2n—1 iniegrals of the auxiliary system (12) which are

additional to the particular integral '=0. Make in these 2n
equations z,, = 0 and forming the further equations

z="’ (mn oee a'n_l)’

p =d\l¢ (@) oo @,3,)

1 d.l: ?

.....................

‘N1

eliminate the 2n quantities z,, ... ,.4, 2, p,; .. p. We thus
obtain n equations among the constants ¢, ,...cy.

Substitute in these equations ¢, for c;, ... ¢ for c,, and
we have n equations connecting @, ... @, 2, P;;e++ Pa, from
which with the aid of the given equation p,, ... p, may be
eliminated, and there will result a single equation connecting
&,, ... &, with 2, This is the integral sought.

[It appears from the manuscript that an exh.mple was to
have been supplied here.]

5. Cauchy’s method is evidently a general one. But its
generality is not of the same kind as that which belongs
to Lagrange’s solution of linear partial differential equations:
It conducts ms, not to a form embracing every possible

B.D.E Il 8
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solution; but to a system of results from which every possible -
solution may be derived, by arbitrarily varying the form of
the function which expresses the initial state of the dependent
variable, that is the value of z when @,=0, and then per-
forming certain eliminations. To obtain a complete primi-
tive we should only have to assume as the form of z when
z,=0 a function of the variables x, ... «,, involving =
independent constants. The form of this function is arbitrary.
Each distinct determination of it under the conditions leads
to a distinct complete primitive. The ‘number of such com-
plete primitives is infinite.

. There are some most important problems in which the
knowledge ‘of a single complete primitive is all that is re-
quired. For this purpose the method of Jacobi which we
shall now give may be employed.

Jacobi's Last Method.

6. Supposing z to be not explicitly involved in the given
partial differential equation

1111 (xn oo mmpupu) =0,

which we shall as before represent by ¥, =0, the problem of
the discovery of a complete primitive consists in the finding
of n— 1 equations

Fi=a, ... Fy=a,,

such that between any two functions F; F] the relation

shall be identically satisfied. The valuesof p,, ... p, deduced
from the equations, by rendering

dz — pdzx, — ... — pdr,=0

integrable lead us to the complete yrimitive expressed by its
integral. : ’
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Now the idea upon which Jacobi’s later methods rest is
that of directly solving the different systems of linear partial
differential equations flowing from the general condition (1),
not of solving, as in Cauchy’s method, one-of those equations
and then limiting that solution by conditions which virtually
involve the satisfaction of the others.

n(n=1)

It is evident that the entire series of 5 conditions

(1) will be satisfied if we determine F, to satisfy the single-
equation

[EFJ =0,

then F, to satisfy the system of two simultaneous partial
differential equations

(FF)=0, [F,F]=0,

then F, to satisfy the system of three simultaneous partial
differential equations

[FF]=0, [FF]=0, [FF]=0,

and so on, until finally 7, is determined by the solution of
the system of n— 1 partial differential equations

[EE-] =0, [—F;E,] =0, ceeeee [F"-IFH] =0,

Now all these are particular cases of the general problem
of determining a function P which shall satisfy simultaneously
the equations :

[FP]=0, [F,P]=0,..... [F.P]=0. (2)

F, ‘F,, ... F, being given functions between each pair of
~ which the equation ]

[FF]=0
is identically satisfied. Here P will represent in succession
the series F,, F,, ... F,.

The given systém is one of homogeneous linear partial
differential equations. It belongs to the class of systems the

8—2
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general theory of which is discussed in Chap. xxvi. But it
18 not necessary to apply the theory in its general form. We
need only a single integral ; for a single value of each of the
functions Fj, 1'{, ... I, suffices in combination with the given
value of F, for the determination of a complete primitive.
Now it may be shewn that the system is of the class dis-
cussed in Chapter xxvI. If expressed symbolically in the
form

AP=0, A,P=0,...A,P=0,

the condition
(A - AA) P=0,

. will be identically satisfied. Hence Jacobi’s method for the
treatment of systems of this kind may be applied.

That the system is of the kind asserted is a consequence of
the following proposition,

ProrosiTioN. If the equations
[uP]=0, [vP]=0
are expressed in the z;ymbolic form
AP=0, A'P=0,

then the derived equation
(AA'=A'A) P=0 ......cu.vveuunes (3),

[[uv] P] 0.

A ¢=n(du d Jw d)’

will be equivalent to

For

A= T i
n(dv d dv d°
A= ‘:‘(—- & _dv 4
=1 d.’l:; d_«p‘ dp‘ d¢‘)
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gg is the coefficient of Z—; in A'P, and Z%
its coefficient in Aj’, its co efficient in the d}erivedequa.tion (3)’
will be (Chap. xxv. Art. 5),
' dv  du
A oz~ A &,

Hence since

e i—-_-n(d_u d:‘v__ﬂl d* _ﬂ d* +_d_'l{ d*u )
=1 dx; d_p‘d;v,- dp. ch:;dx, d:c; d_p‘da:, dp‘ d:c‘dz, !
d wi=n (du dv du dv)

da; " \da, dp, ™ dp, dx)

or

d
or e [uv].

In like manner the coefficient of %’ is
s
d
-— “% [zw].

Hence (AA'— A’A) P =342 (d——‘z:)l g—: - ‘ic[i%,ﬂ %) '

- [[uv] P],

whence the Proposition is established.

Applying this to the system (2) we see that any derived
eqnatllzm will be of the form

[[FJ«}] P] 0.

But [FF}]=0 by the conditions given; hence the condi-
tion (AA;—AA) P =0, is identically satisfied.

The results of Chapter XxVI. being thus directly applicable
to the system under consideration, we see that a common
integral of the system (2) may be found by a series of alter-



118  NON-LINEAR PARTIAL DIFF. EQUATIONS. [CH, XXVIL

nate processes of integration and derivation. We begin by
seeking an integral of the first partial differential equation.
By a process of derivation, always possible, followed by the
integration of a differential equation between two variables,
we arTive at a common integral of the first two partial diffe-
rential equations. Again, by a process of derivation followed
by the solution of a differential equation we obtain a common
integral of the first three partial differential equations. And
8o on, until a common integral of all is obtained.

7. Another solution of the above problem has recently
been given. Beginning as in Jacobi’s method by finding an
integral of the first partial differéntial equation, a process of
derivation agreeing in principle with Jacobi’s, only more
extended, may lead us without further integration to a point
at which the discovery of a common integral of the entire
system will depend only upon the solution of a single diffe-
rential equation of the first order susceptible of being made
integrable by a factor. Failing this, it will enable us to
convert the given system of partial differential equations into
a new system possessing the same general character, but con-
taining one equation less. Upon this the same process may
be tried with a similar final alternative—and so on till the
required integral is discovered. (On the Differential Equa-
tions of Dynamics. Philosophical Transactions, 1863).
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CHAPTER XXVIIL

PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDZIR.

[TH1s Chapter is a reconstruction on a larger scale of part
of Chapter xv. At the end of the Chapter reference will
be given to other writings of Professor Boole on the subject
here discussed.]

1. The general form of a partial differential equation of
the second order is

F(x,y,2,p,¢, 7,8t =0.ueeunn.n. (1),
dz dz d’z d’z d*z

P=a, g=(7]—/, r=%" 3=m§, _d_y"'

where

It is only in particular cases that the equation admits of
integration, and the mest important is that in which the
differential coefficients of the second order present them-
selves only in the first degree; the equation thus assuming
the form

Rr4+8s+ Tt="V.utriiiireranena. (2),
in which R, 8, T, and V are functions of , y, 2, p and ¢.

The most important ﬁart of the theory of the solution of
this equation is due to Monge, and was extended by Ampére
to the more general equation

Br+4+ 8s+Tt+ U —rt)=V.ierrireunnon (3).
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This equation, together with the particular equation of
Monge, and the equation .

Br+ 88+ Tt+ U(s*—rt) =0,

both which though falling under Ampere’s general form
possess peculiarities demanding special notice, I propose to
consider in this Chapter. I shall in conclusion make some
observations on the theory of partial differential equations of
the second order with more than two independent variables.

Monge’s method, and Ampere’s in so far as it is an exten-
sion of Monge’s, consists in a certain procedure for discovering.
either one or two first integrals of the form

u and v being determinate functions of z, y, 2, p, and ¢; and
f being an arbitrary functional symbol. From these first in-
tegrals, singly or in combination, the second integral involving

two arbitrary functions is obtained by a subsequent inte--

gration.

Now this procedure involves the assumption that the }go-
posed equation admits of a first integral of the form (4). But
such is not always the case. There exist primitive equations
involving two arbitrary functions, from wEich by proceeding
to a second differentiation both functions may be eliminated
and an equation of the form (2) obtained, but from which it
is impossible to eliminate one function only so as to lead to an
intermediate equation of the form (4). KEspecially this hap-
pens if the primitive involve an arbitrary function and its
derived function together., Thus the primitive

s=+a) + ¥ G —2) =2 [ g +a) - ¥ (y ~2)}...(9),

leads to the partial differential equation of the second order

“ but not through an intermediate equation of the form (4).

It is necessary therefore, not only to consider the case in
which the assumed condition is satisfied, but also to notice

i
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what has been done in those cases which do not at present
fall under the dominion of any known method.

Genesis of the Equation.

2. Prop. 1. A partial differential equation of the first
order of the form u=f(v), or its symmetrical equivalent,

F (u, v) =0,

in which w and v are any functions of x, y, 2, p, ¢, alway:;
leads to a partial differential equation of the form

Rr4+ 8+ Tt+U@8—rt)="V.

For, differentiating the proposed first integral with respect to
x, and with respect to y, we have -

(e e, 2
+g§'(%+%p+g§r+j—;s)=0,

LA D

(e duy o, o

+ =0.

For brevity, write

du du | du du du du
(d—:c) ford—w+p%, and ( )for@+qu-,
and then eliminating ‘

dF  dF
du’ dv’

dy
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we have

(@55 4@) 5~y

(&5 EHE 5

which, on effecting the multiplication, gives
du (dv @) @} ,
{@ (@> - (dy dp
du\dv du (dv @)d_v du ‘—i'—’)}s
- {(d_w)@_f—i? (35> (dy dg g (dy

@55 @)

du dv du dv\ ,,
%% 3@«

(2 (22) = (2) (2. o)

a result which, since » and v are by hypothesis given func-

tions of z, y, 2, p, ¢, is seen to be a particular case of the
general form (3).

‘We may hence deduce also the conditions under which

articular forms included in the general form (8) arise. Thus,

n order that the equation u=#f(v) may give rise to a par-
tial differential equation of the second order of Monge’s form

Rr+8s+Tt=7,

it is necessary that the condition

should be identically satisfied. This requires, by Chap. 11.
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Art. 1, that » and v, considered as functions of » and ¢, should
not be independent.

3.- The geometrical relations of the equation (3) are also
remarkable. It may in particular be shewn that an equation
of this form will be satisfied by the equation of any surface
which constitutes the envelope of any system of surfaces
formed by the variation of three parameters in subjection
to two arbitrary conditions. For let the common equation of
the enveloped surfaces be

2=f (2,9, @ b0,C) eeruririiiiniannnns. (8),
the parameters a, b, ¢ varying in subjection to the conditions
¢, (a,,0) ;O, '¢s (@,8,0) =0,

conditions which, determining 4 and ¢ as functions of @, may
be reduced to the form

b=¢(a), =Y (@) emerirerrereenn ).

Now the values of { and ¢ being the same for any point
in the envelope as for the same point in the generating surface, .
we have for all such points

ﬁ=d_f%»-_b-ﬂ, q:yg%&_c) ,,,,,,,,, (10).

These two equations in conjunction with (9) enable us to
determine a, b, ¢ ‘as functions of z,y, z,p, ¢. Let these

values be ,
a=u, b=v, c=w.

‘Then sﬁbstituting in (9) we have
v=¢ (), w=y(u),

equations which hold for all such points. These are then the
partial differential equations of the first order of the envelope.

Now each of these equations is of the general form (4);
whence by Prop. 1. the partial differential equation of the
second order is of the form (3), as was to be proved.
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Let us actually construct this equation.

Differentiating the first of the equations (10) with respect
to z and to y, and regarding therein a as a function of those
' variables, and 4 and ¢ as functions of a, we have

r=d_’f+(dff d?fééJ,d?fiiE)‘Z‘f
4zt \dadz * Bz da T dedz da) &’
& (f . df B dFf de\da
“’dxdy‘*(dadx*dbdx%*dcdma—a)dy’

from which we readily derive

&f\ da ( d’f)da

(-2 % =

s_dxdy

Proceeding in the same way with the second equation of
the system (10) we have

_df\da_(, _df\da_
("'dxdy)dy (‘ dy’)d.v =0.
Hence, eliminating gg and %, we have

(-2~ 25) (20

T g F B, o PO (Y
Ord—?’r—2dxdys+;l_:? t+8’_rt_2l.c’dy"_(M)’

the equation sought.

Comparing this with the general form (3) we have the equa-
tions

Coap _yay o dydpar oy
- dyt " Tdedy dd' 1 _do'dy' \dzdy
F=—F T :

U v
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... df dYf af .
whence eliminating i & and Tody we arrive at the
equation,

8+ 4 (UV-RT) =0.

This then is the condition which must be satisfied in order
that the equation (8) may admit of an integral representing
the envelope of a system’ of surfaces in which three parameters
vary in subjection to two connecting conditions. It is only

proved however to be a necessary, not to be a sufficient, con-
dition.

Solution of the equation Rr + Ss + Tt+ U(s'—rt) = V, when
a first integral of the form F (u, v) =0, exists.

4. In the following sections we propose

1st. To shew that when a first integral of the above form
exists, its discovery depends upon the solution of two simul-
taneous partial differential equations of the first order re-
solvable 1nto linear equations.

2ndly. To shew how from such first integral or integrals
the second integral is to be obtained.

Prop. 11.  If the equation
RBr+ 8+ Tt4+ U@ —rt)=V
admit of a first integral of the form F (u, v)=0, in which u
and v are functions of x, y, 2, p, q, then will F (u, v) considered
as a function of x, y, 2, p, ¢, and represented as such for brevity
by F satisfy the two partial differential equations of the first

order,
HE) G 1@y (@)@
+ VdF dF

ap 4~
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#(5) 5% 5+ 7(F)
+0{(&) 5+ (@)%
in which

apy_ar, dF - (dF)_dF 46
(—(Z’; _c-la—:-*-sz’ (dy dy 13"

Regarding the function F in the proposed integral- F'=0
simply as a function of z, y, 2, p, ¢, we have

dF) dF  dF R

)+ r45-8=0 .

(dw dp dg o (11)

B dF dF veveneees (11).
il B G

( >+dp8+dg

dy

On the other hand, regarding F' as a function of «, ¥, 7, p, ¢,
mediately through « and v, we have the system

dF ((du\  du_  du ) dF (/dv\ dv_ dv ) .1
d—u{(‘ﬁ)ﬂ‘li”@’}f’%Kﬁ)*:‘zﬁ"*zq"}“” )

dF ((du\  du  du dF ((dv\  dv  dv
w @) G g S (@) Gergd=o
and these systems are equivalent.
Now if from the second of these systems we eliminate ?g

and Ci—f;, we obtain (Art. 2), a result which must be equiva-

lent to the proposed partial differential equation,
 Rr+8s+ Tt + U —rt)=V.uuuuuue. (13).

This equation then considered as a relation between r, s, ¢,
must be an algebraical consequence of the relations (12), and
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therefore of the equations (11). If then we determine alge-
braically two of the quantities 7, s, ¢, (we select 7, ¢) from the
system, and substitute their values in (13), that equation
ought to be satistied independently of the value of the re-
maining quantity s. Now supposing p and ¢ to be both con-

tained in F, so that neither & nor dg vanish, we  have
from (11), ‘

(‘113>+£"8 J_E),,'ZFS
- dp dy

substituting which in (13) there results
) (D)oY E) a3

dx ) dq dy/ dp dz ) \dy dp dq
dF\  dF dF |, (dF\*
+H2 (%) -5 5+ 7 (%)
(3F\dF | 1 (dF ﬂ”} =
+U(g dp+U(dy)dg §=0.... (14).

Now as this equation is to be satisfied in virtue of the con-
stitution of B, S, T, U, V, and the function F, and indepen-
dently of s, both the coefficient of s and the absolute term not
containing s must be separately equated to 0. Thus F con-
sidered as a function of z, y, 2, p, ¢, and containing p, ¢, at
least must satisfy the partial differential equations

W) E@E
o))+ s
Y o2 )
(d dF (dF)d o

d)dp *\dy )dg |~

,+U{
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This result may also be established by forming the equa-
tions of condition which express the proportionality of
R, 8§, ...V, to the corresponding quantities in the constructed
~equation (7). From these equations of condition it is actually

possible to eliminate in two distinct ways the quantities

(Z—%) ) (?) , ? ) —Z—;, the result being the formation of two
partial di erentigl equations for u agreeing in form with those
above given for F. (See the memoir Ueber die partielle Diffe-
rentialgleichung... Crelle's Journal, Vol. 61.) The actual
. transition from the former to the latter rests upon the con-
gideration that the equation F (u, v) =0, when ¥ is arbitrary,
is not really less general than the form ® {¥ (u, v), v} =0, n
}v'hich ;he P is arbitrary. .And here » has been replaced by

(u, v).

The only condition respecting the application of the above
equations is that we do not admit any relations which make

either d—F or @to vanish.

dp — dg

5. Prop. 111.  The solution of the system of partial diffe-
rential equations established in the last proposition may in all
cases be made to depend upon that of simultaneous linear partial
differential equations of the first order.

In demonstrating this proposition we shall consider first
the case in which U= 0, then the case in which V=0, lastly
the case in which neither of these quantities vanishes. The
ground of this division will appear in the investigation,

Case 1. Suppose U=0. The equation then is of Monge’s

form,

Br+ 8+ Tt=V.
The second equation of the system (15) becomes

") 2% &+ (g) =

C L e v wm W WA Yawm w
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and therefore breaks up into the equations
dF dF dF  dF

@" “'."1@= 0, @_m’dp_=o’
ml and m, being the roots of the quadratic equation
B?—8m+ T=0..ccco0ueirunnene (16).

As each of the above constituent equations is of the form
aF _ . dF
dq """
the system (15) may be reduced to the form

.Rm(i—f)%_l_gt(_ _J_F+ deFdF

) T ="

which breaks up into the equatibns
dF d. d. dF
o, () 7(E) v o,

The former of these we must reject (Art. 4. There re-
mains for the determination of F'the system of linear partial
differential equations

Rm(%)+T(é—;‘>+Vmg=0

and there will exist either one or two systems included under
this form, according as the roots of the quadratic (16) are
equal or unequal.

B.D.E. IL 9
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Case 1. Let V'=0. The system (15) then becomes

(di) o (dy &t (df) (dF) o

d  gdF dF (
d i
o) 5)-

Eliminate U by multiplying the first equation by
() 2F , (4 &
dx /) dp dy/dg’

the second by

(@) (&)

and subtracting; we obtain, after rejection of the common

dF dF
factor —— d G’

y dF'\ (dF d.
R(Zlg)*’g(dm}(d +T(dy =0.

‘We shall put this equation in the place of the second equa-
tion of the system. This we are permitted to do under the
restriction that in seeking to satisfy the system so changed
we do not make use of any relations which would cause either
of the two factors employed in the process of elimination to
vanish or become infinite.

The new equation reduces to one equatxon, or breaks up
into two equations of the form

(& df) (d—g-' L JE— (18),

m being determmed by the quadratic equation
Rm*+ Sm+ T=0.
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Mgking (‘;—5) =m (‘3—5) in the first equation of the system .
(15), we get

(%{ng+ Tg}:+ Um(%>}=0,

which breaks up into

dFy dF . dF d

But if we combine the first of these with (18), we obtain
adF dF
%)= () =0

and this combination causing both the factors employed in

the elimination of U to vanish must be rejected. "There
remains then the combination

()-~(D)-0]

dF _dF dF
R (237 =0

and this will represent either one or two systems of equations
according as the quadratic determining m has equi} or un-
equal roots.

Case 111, Let neither U=0 nor V'=0.

Multiply the second equation of the system (15) by an
indeterminate quantity /, and add to the first; then we have

RI (%F);Tl (d@ r U(%) (%37

() ()

+Ul(‘;—y %’+R(%')g-
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‘We shall enquire whether it is possible so to determine /
as to resolve this into linear factors.

We might investigate this by resolving the equation as
aF . But the form of

dp
the equation suggests what the forms of the linear factors

a quadratic with respect to a o

must be if the resolution be possible. For as the squares of gg

and-d—F both appear, and these squares alone, in the func-

dp
tion to be resolved, it is clear that g—l-;’ and g will be the

only differential coefficients of F' which will appear in both
linear factors in common. The most general suI‘)})osition
F

possible is then that one factor shall contain ‘717 and (—l; with
d .y (AF
( Iz ), the éther the same Wi Fr

Assuming then one factor to be of the form
dF _dF dF
g+t ()

it is seen from the form of the coefficients of the first three
terms of (20) that the other factor must be of the form ‘
dF TidF U/
& tw e (&)
and the resolved form of (20) must be

dF TldF U/d dF - dF d
g rmm @ g (@)=

Multiplying out and equating coefficients, we obtain the
conditions - e S
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) Tln

=T
m
| rTn
n
n=2,
n
R = Rn,
e

V—-Sl=Rm+ —.
m

The third and fourth of these conditions are equivalent,
and give n=1. The first and second are also equivalent,

and give m= —Tﬁ These values reduce the last equation of
condition to

| , UP+Sl+-1-‘)§— V=0,

8o that [ is determined by a quadratic. The resolved form
of equation (20) now becomes

dF dF d. dF T dF /d } v
R = — = T — 4 (=]} =0.
{ Zt0%+U (g }{’dﬁvdp*(dﬁ

To these results we may give a somewhat simpler form by
making Ul=m; not the m used above. We have then as
the quadratic for determining m,

m+ 8m 4+ RT = UV=0..cc0uueersen. (21),

and as the resolved form of (20),

{R%+m%§+ U(Z—y }{mj—f+ T§+ (&)} =o.
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Let m, and m, be the values of m. Then we have from the
last the two distinct equations

dF . dF . 1d dF . dF . d
{Rd—q+m1@+U(H—i }{ ma +po+U( F)}

{2 +m + V(@) g + 75+ (@)=

and it is evident that these will be together equivalent to the
equations (15) from which they were derived.

Now to satisfy these equations mmultaneously it is neces-
that we should e(}uate to 0 one linear factor from each of
their first members. 1f we equate to 0 the first linear factors,

we have
dF . dF d.
B +mgi+ U(d—F)=o,

dF dF d
R— dg +m, ,@ +U ( dy =0;
whence, by subtraction,

dF
(m1 - mn) @ =0

This combination must therefore be rejected (Art. 4). For
the same reason must the combination formed by equating to
0 the second linear factors in the left-hand members of the
above two equations be rejected. There remains then only

the combinations formed by equating to 0 the first factor of
one of these members, and the second of the other.

Thus we should have the combination

Gt

dF d

0



ART. 7.] OF THE SECOND ORDER. 135

with the combination which would be obtained from this by
interchanging m, and m,. :

6. It results from the foregoing investigations that the
function F is in all cases to be determined by the solution of
two simultaneous linear partial differential equations with
Jive independent variables, Now the theory developed in
Chapter xxv. shews that the number of integrals of such a
system cannot exceed three. That theory enables us both to
determine what the number of integrals is, and to construct
the system of ordinary differential equations, reducible to the
exact form, upon which their discovery depends. - ’

We have seen that the knowledge of two integrals » = a,
v=> of the system enables us to construct a general first
integral

F(u, v) =0,

of the partial differential equation (3). And the solution of
this first integral would lead us to the second integral which
is the final object sought. But the direct solving of a partial
differential equation of the first order which is not linear and
which involves in its actual expression an arbitrary function
is difficult, and happily it may be avoided here. The fol-
lowing propositions mﬁ enable us to accomplish the virtual
solution by a different solution, founded however upon the
same general principles.

7. Pror.1v. The integrals of the respective systems o
stmultaneous linear artiatle‘gdzﬁrefmzl eqm usy whzb{
the determination of F depends are so related that if from two
such. r tve tntegrals the values of p and q are determined,
they wrll render the equation

dzf = pdz + qdy
integrable. And n the particular case tn wht'ch',tke two systems

become identical, any two integrals of the system stand in the
same relation. »
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For, let @ be an mtegml of the system (22), and ¥ an

integral of the associated system obtained by interchanging

m, and m, in the case in whlch these quantities are different.
Then @ satisfies the equations .

0,

R‘Z)+ ,‘flp + U(fl‘;’)

ma * T@+ (%)

and ¥ satisfies the equations

R‘Z+m,?+ U(‘N') 0,

0;

dg+Td +U( =o.

But the necessary and sufficient condition in order that the
values of p and ¢ derived from the equations ® =0, ¥ =0,
may render dz — pda — gdy integrable, is

@) %% (&)
GEETE
See Chap. x1v. Art. 11, Equation (36).

Now if from the previous equations we determine the values

T oo

and substitute them in the above equation of condition it will
be identically satisfied. i ,
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The determination of (%I-)) y +« from the previous systems

requires that U should not vanish. Hence the ]iroposition is
established except in the case of U=0, which is left doubtful.

To examine this case let us revert to the system (17) which
is proper to it. To that system since

Rm'— 8m+ T=0,
whence ' Rmm, =T,

we may give the form

dF dF dF) d. V dF
7%= (@) *m(F) s =0

or the form obtained from this by interchanging m, and m,.

Substituting in these respective forms ® and ¥ in succes-
sion for F, we find
B3, (30, (2) _yae
dq - dp ’ t] dy R dp ’

av_, v @v) | an ¥y
7% (&)= (5)-2%

and these values substituted in (28) reduce it to an iaentity.
Thus the proposition is established generally.

da

Lastly, as in the case in which the two roots of the quad-
ratic for determining m are equal, the two systems of partial
differential equations for determining ® and ¥ become one, it
follows that if from two integrals of that one system we can
deduce values of p and ¢ these values will render the equation

, dz — pde— qdy=0
integrable.
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8. Propr. v. When the system of simultaneous linear par-
tial differential equations determining F admits of two tntegrals
u=a, v=>, #t will admit or will not admit of a third inte-
gral w=c, according as the roots of the quadratic determining
m are equal or unequal. .

- The system in question, (22), becomes when we divide by

. dF dF\ ., . "
U and write for (@-) and (%) their fu}l expressions

dF dF wm dF R dF
G & T Ty
dF dF TdF m,dF
P ETT Rt T ="
or AF=0, AF=0,

=0,

in which
d- d m d Rd
A= 1T T I
d d Td m d
A,—'—‘l'l'_p—r'l-—U‘@'i'T; e

Hence the equation

(A,8,—-4,4,) F=0
becomes
m,—m @' _1_'_ m\ dF m R dF_
7+ (0 A,ﬁ)zl; (AIF’—A,T])E—Y—O.

- In this expression the coefficient of the first term only has
been calculated.

Now, by the theory developed in Chap. xxv. in order that

the two simultaneous partial differential ecguations should -

have their full complement of integrals (three) it is necessary

that the above equation should be satisfied identically. This

involves three conditions, namely,

- A
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ml—m,=0,
T

A, T~ A, %= 0,

m R
A, '(7' =4, T~ 0,
the first of which is the one affirmed in the Proposition to be

necessary. ‘
Secondly, it is to be shewn that if this condition be satis-
fied and it the system of given linear equations admit of two
integrals u — a, v =15, it will admit of a third.
Replacing m, and m, by m the system becomes
dFF  dF wmdF R dF
1L T g
dFF dF T dF m dF
P T TRt TG "
Now if we construct from this the corresponding system of
ordinary differential equations, we shall find it to be
dz — pda — gdy =0,
T g™

=0,

0.

dp- do— T dy=0,
dg—"du— T dy=0,

Now it is impossible that the first of these equations should
be integrated without a previous determination of p and ¢ as
functions of z, g, 2, seeing that dir, dy, dz are the three differ-
entials entering into that equation. Such determination can
only come from the integration of the second and third equa-
tions of the system. But if these equations can be integrated
in the forms » = a, v =5, then « and v being particular values
of F satisfying the partial differential equations, it follows
from the last %ropomtion that the values of p and ¢ which
they will yield will make the first equation integrable.
Hence if the system admits of two integrals it will admit of
three; as was to be shewn. On the basis of these Proposi-
tions the theory of the second integration rests.



140 PARTIAL DIFFERENTIAL EQUATIONS [CH. XXVIIL

Theory of the Second Integration.
9. First suppose the values of m unequal.

Then v, = a,, v,=>, being the two inte%rals (and we have
seen that there cannot be more than two) of one of the systems
of linear partial differential equations, and u, = a,, v,=b, those
of the ot%er, the general first integrals of the given system
will be

4 (“n vl) =0, v (un vs) =0,

The values of p and ¢ determined from these will by
Proposition 1v. render

ds — pdec — gdy =0

integrable, and the integral of this will be the general integral
of the proposed partial differential equation. For it will in-
volve explicitly or implicitly two arbitrary functions derived
from those in the first integrals.

It suffices however, following herein Charpit’s method, to
combine one general first integral derived from the one sys-
tem with a particular first integral derived from the other
system, e.g. the integrals

Dy, v)=0, uy=a

The values of p and ¢ hence derived, and employed as
before, will lead to a second integral involving one arbitrary
function and containing two arbitrary constants. This con-
stitutes a complete primitive from which the general solution
will be obtained by converting one of the arbitrary constants
into an arbitrary function of the other, and eliminating the
latter between the equation and the one derived from it by
differentiation with respect to that constant.

Secondly, suppose the values of m equal.

In this case we have but one system of partial differential
equations so constituted however that if it admits of two inte-
grals it will admit of three.
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Let wu=a, v=>5, w=c represent these integrals. Then if
from these we eliminate p and ¢ we shall obtain a final inte-
gral of the form :

z=f(x ¥, a, b, c),

and this constitutes a complete primitive from which we shall

deduce the general integral by making b =¢ (a), ¢ = (a),
and eliminating a between the equations .

z=f{z, 4, a, ¢ (a), ¥ (a)}
0w df {z, y, a:d‘z (a), \[r(a)}

To prove this let us combine the general and particular
first integrals

v=¢ (), u=a.
The values of p and ¢ hence obtained make
dz—pda— qdy =0
integrable, and the result can be no other than the remaining
integral w =c, or rather what this would become on eliminat-
ing p and ¢ from it. But since the equations by which this
integration are to be effected are equivalent to

u=a, v=¢(a), '

w will become a function of z, y, 2, @ and ¢ (a). Also by
Charpit’s method ¢ is to be treated as a fanction of a, so that
ultimately we have the result above assigned.

‘We have here supposed U not to vanish. If it do the
theory assumes another but simpler form. Let

v=F(u), w=y(y

be the two general first integrals. Then, since by the con-
dition at the close of Art. 2, if p be eliminated from these
equations ¢ will also disappear, it suffices to eliminate them
together in order to obtain the general second infegral.
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10. Although the cases in which U=0 and V=0 have in
‘the foregoing sections been treated for simplicity apart, their
theory might have been deduced from that of the case in
which neither U nor ¥ vanishes.

Thus to deduce the equations for the case of U= 0 elimi-

nate from the general system (22) ‘—idi; and %’ in succes-

sion, and we find
ar d d
(BT - mm,) o Um,(ag) + UR(E%) =0,

dF d. d.
(BT - mm) G+ UT (Ty) — Un, (zg) 0.
But from (21) RT—mm, = UV.
Substituting, and then dividing by U we find

V%—m,(‘fi—y +R(%’)=o,

V%’E T(%')—m,(gg)=0,

the equation determining m,, m, being
m'+ Sm+ RT=0.
This is equivalent to the results of Art. 5, Case 1.

11. 'We found it necessary (Art. 3) in order that the gene-
ral partial differential equation of this Chapter should be satis-
fied by the envelope of a system- of surfaces the equations of
which contain three parameters varying under two conditions
that the relation

8*+4(UV-RT)=0
should be satisfied.

It appears from Art. 8 that this is but one of three condi-
tions necessary and together sufficient for this purpose. The
formal conditions for every form of ultimate solution con-
sistent with the existence of a general first integral F' (u, v)=0
can be deduced in the same way. : .
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[In the Bulletin de U’ Académie Impériale des Sciences de
St Pétersbourg, Vol. 1v. 1862, there is an article entitled Con-
sidérations sur la recherche des integrales premitres des équa- °
tions différentielles partielles du second ordre, par G. é)ldt
(Lu le 7 Juin 1861).

The article occupies pages 198—215 of the volume. Al-
though the name does not quite correspond, I consider that to
be a misprint, and I attribute the article to Professor Boole,
partly from the nature of the contents, and partly because it
18 known by his friends that he was engaged at a time corre-
sponding to the date here given in the preparation of a mathe-
matical article in French.

The object of the article is to determine the conditions
necessary for the existence of a first integral of the equation
dz d*z
=iyt T ap

where R, S, T, and W are any functions of z, ¥, #, % and

R % + S + W= 0’

dz .
(7!; ’
and also to determine the conditions which must hold in order
that Ampare’s method of integration may be employed.

In Crelle’s Journal, Vol. LXI. there is an article by Pro-
fessor Boole, entitled Ueber die partielle Differentialgleichung
zweiter Ordnung Rr+ Ss+ Tt + U(s'—rt)=V.

The article is dated 1862 ; it occupies pages 309—333 of the
volume, :

Among Professor Boole’s manuscripts I found a memoir
very closely resembling the article in Crelle’s Journal; it
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would appear that the memoir was drawn up with a view to

ublication in the Transactions of some English Scientific
gociety, and that this design was afterwards abandoried in
favour of the article in Crelle’s Journal.

After some hesitation I have resolved to print this memoir.
Even if the memoir had been identical with the article in
Crelle’s Journal it would have been convenient to the English
reader to be able to avail himself of the investigations; and
the memoir contains remarks which do not occur in the article,
and which are interesting in connexion with the history of the
subject. There is some repetition of matter which has already
been given in Chapter xxvi1r.; but I was unwilling to impair
the completeness of the memoir by abridgment or omission.
Acicordingly the memoir forms the next Chapter of the present
volume.

In Article 2 of the next Chapter will be found the pro-
cess to which there is an allusion towards the end of Article 4
of Chapter xxviII.

.

It is obvious that the subject of partial differential equa-
tions of the second order was much studied by Professor
Boole. The chronological order of his writings on the sub-
Jject appears to be as follows :

1. Chapter xv. of the first edition of his work.
2. The article in the Bulletin of St Petersburg.

3. The memoir which forms Chapter XX1X. of the pre-
sent volume.

4. The article in Crelle’s Journal.
5. The Chapter xxvI1IL. of the present volume.]
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' CHAPTER XXIX,

ON THE SOLUTION OF THE PARTIAL DIFFERENTIAL EQUATION
Br+8s+Tt+U(s—rt)=V,INWHICH R, S, T, U, V
ARE GIVEN FUNCTIONS OF &, ¥, 2, p, ¢

1. THE equation, the theory of the solution of which
I propose to consider in this paper, is remarkable from its
connexion with Geometry. I‘f)' the equation of a surface
contain three constants which vary as parameters in sub-
jection to any two conditions connecting them, the gene-
rated envelope will satisfy a partial differential equation of
the above form. In other words any envelope of the surface

F(x,y,2,a,b¢)=0

formed by the variation of a, b, ¢ in subjection to two con-
necting conditions

¢, (a, 5, ¢c)=0, ¢,(a,b,c)=0

is necessarily an integral of a partial differential equation of
the form given above.

Now this theorem is the more important, because it is
only when three parameters in the equation of a surface
vary in subjection to fwo relations that the envelope pos-
sesses, irrespectively of the form of the connecting relations,
any definite character. If there be but one connecting rela-
tion it is possible to determine that relation so as to make
the envelope assume the form of any surface whatever, and
therefore the possible system of envelopes is in such case

B.D.E. II. 10
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unlimited. If there be three connecting relations the para-
meters become absolutely constant and no envelope exists,

The partial differential equation
Rr4+ S+ Tt+ U(s*—rt)=V

is remarkable also as including all the cases in which a
partial differential equation of the second order admits a
first integral of the form

u =f (),

u and v being definite functions of , y, 2, p, ¢, and f(¢)
arbitrary in form. ‘

Neither of these statements is sufficiently general to con-
stitute a theory of the genesis of the partial differential equa-
tion under consideration, but the second one is more general
than the first, and is indeed sufficiently so to serve as the
ground of an investigation which connects the solution of
the equation in all cases with the satisfaction of a system
of simultaneous ordinary differential equations of the first
order and degree. And this is the ground upon which the
method of the paper will rest. I propose to shew, 1st that
the solution of the given equation on the assumption that
a first integral of the form u=4#(v) exists requires the satis-
faction of a system of two ‘partial differential equations of
the first order and second degree; 2ndly that this system may
be resolved into four systems, each consisting of two partial
differential equations of the first order and first degree, two
of which systems are irrelevant and the other two relevant;
3rdly that the solution of the two relevant systems ulti-
mately depends on the solution of a system of ordinary
differential equations of the first order, and that from these
ordinary differential equations the given equation of the
second order may be deduced independently of the assump-
tion above mentioned. 1 shall also discuss the theory of tlll)e
second integration. And I shall exemplify another method
of solution connected by a remarkable law of reciprocity with
the above method.
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First Investigation.

9. Prop.1. Ifu=f(v) be a first integral of the equation’
Rr+ Ss+Tt+ U(f—rt)=V............ (1),

then will u and v, considered as functions of , y, 2, p, ¢, each
satisfy two partial differential equations of the form

(Een)S)
i () -

R (i) @+ T(du) du C veeeenneenns(2),

)%+ "% &
(%) (204 i e o

in which (Z—-:) and (%) stand for %+ ? %', and du  du

EIA

respectively.
To demonstrate this proposition we shall form directly the
partial differential equation of the second order of which

u=/f (v) is an integral and, comparing that equation with (1)
deduce the conditions for the determination o(% u and v. ’

Differentiating  =f (v), first with respect to 2 and secondly
with respect to y, we have

10—2
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. du du du\ du du du
or, if we represent =P T by (da:) @*fIz by (@) ;
dp

Y 9
d.z:byr’dy and bys,and byt

gt ed)

Z—Z)%’p = O @) e g e

Eliminating f* (v) we arrive at the partial differential equa~
tion of the second order,

{ (zailv Tdp dy)}
{du dv) dg dy) (dx dp( }
(@ -5W G S-S He-n

- (Z_;) (%) - (% (3—;) ........... ereeresresnens 3.

It is seen that as respects the mode in which the quan-
tities 7, s, t are involved this equation is of the same form
as the given equation (1). That it may be equivalent, its
coefficients must stand to those of (1) in a common ratio w.
This gives

du (dv\ dv (du

dp K@) - () =+

E-EE-§ e
du dv

c—l—g (75: ..................................... (),
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dudv dudv_
dg dp~dp ag "

) (dv) (& u) @) ) _(e)'.l

As we have here five equations which are homogeneous with
respect to the four differential coefficients of v and to u, it is
clear that we can, by the elimination of these quantities,
obtain a relation connecting the differential coefficients of u
with B, 8§, 7, &c. But the peculiar cyclical form of the
functions in the first members of the above system enables
us to effect this elimination so as to lead to fwo final equa~
tions mdependent of v and .

Uieorerenreseessensessns vererenenes @),

Thus multiplying (a) by (Z:) L NOR (Z_;) %f?

du du

@ by ( >(%) and (o) by 55 -7, and adding, we find, on

rejecting the common factor u,

LR

+ Vj“ ‘Z 0ereenne reereereerenaes (4).

Again, multiplying (a) by (j—’:;)' (b)‘by (%) (@) (c) by

du\? du\ du
(E;) ) and- (e) by ‘;; dp+ dy dg’ adding, and again re-

jecting the common factor,u, we have
() () + 73]

+ V{(%) g—: + (‘%‘) %} =0 .............. (5).
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Hence, u considered as a function of z, ¥, 2, p, ¢ satisfies
the two partial differential equations (4), (5), both which are
of the first order and second degree.

As u and v enter symmetrically into the system (a), (b),
&ec., v will also satisfy two partial diﬂ'erentiaf equations of
the same form, viz. the equations

dv\ dv dv\ dv 7
(&) 5+ 7(5) 5
dv\ (dv dv dv
+U(—- (—— +V+— +==0.
dm) dy) dp dg . .(6)
dy\* dv\ (dv dv\* e
2E)+s@ G @ |
dv\ dv | (dv\ dv
V(@) G+ (@)% =)
Further, these two systems> of equations constitute the
complete system of equations resulting from the elimination of -
p from the five equations (a), (8), (c), &c.; for in their deter~
mination, no factor involving either the-differential coefficients

of u and v, or the quantities R, S, T, &c. has been rejected
directly or indirectly. '

T am not aware that the above results of elimination have
been noticed before.

3. Prop.11. The system of partial differential equations
above obtatned for the determination of u, vz.

@@

AT F oeee o(7)
)+ (&)

e
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admits of resolution into four systems, each consisting of two
linear partial differential equations of the first order. Of these
systems two only are relevant to the solution of the problem.

For, mﬁltiplying the sécond by an indeterminate qmﬁti
A, and adding the result to the first, we have o

2 () + e () (7)) + 2 (5)

+n{(%)g—;+(%) g;—‘}=o..... ........ wen(8).

. Now let us see if it is possible to determine A so as to
make the first member of the equation resolvable into linear
factors. We cannot say @ priors that such resolution is pos-
sible as we should be able to do if that member were homo-
geneous and of the second degree with respect to ¢three instead
of with respect to the four su%;:ect variables

@) @ &) @)

Observing that the squares of Zl—;—; and % are wanting

in the first member of (8) while those of (%) and (%)
appear, we are led to assume as the proposed equivalent of
tEat member an expression of the form

)3 ()5

Multiplying the factors of this expression together and
then equating the coefficients with those of the first member
of (8) we have

1
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B +Mm=U+ 8hceerennriniinnennnns (a),
mm =T ceueeiiiininnncininncnne. (®),
Mm=AV=mn'...... Ceeesrensiasaieas (¢),
Br'=R..cceviriiriiniiincnnnnnns (@),

A =T .ovvivuirininiinninnnennnnn, (e),

AN = Vevevreriniiiiiirinennnnen f)s

From (), (c), (d), we find
T

n="V, n'=1, m=2AV, m——V,

values which will be found to satisfy (¢) and (f) also, and
which reduce (a) to the form

VA —8VA+RT-UV=0.
Supposing A thus determined, the equation (8) becomes
du du du du\ | T (du\ |, du
{2(@)+ V"(dy) V@}{"(dz)*‘ 7 &y +dg} o
The result is a little simplified if we retain m in place of A.
‘We thus find as the resolved form of the given equation
du\ dw du du du
{R (d"a‘:) +m (dy) + V% }{ (dw) + T(dy) + V@} =0..(9),
m being determined by the quadratic :
m'—Sm+RT—-UV=0.

If m,, m, be the values of m thus found, we have
{r (@) +m )+ 7} () + 2(5)+ 7 g
(@) em @) g @) 7 @) -

\

]

0,
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and these two equations are manifestly together equal to the
system (7). ‘

Now these equations can only be simultaneously satisfied
by equating to 0, one factor in the first member of each; and
the gifferent combinations which are thus possible give rise
to four binary systems of linear equations. Let us examine
these systems separately.

If ‘we simultaneously equate to 0 the two first factors of
the left-hand members of the last two equations, we have the

systems
R(%)+m, (%‘) + V%=o, |

()em ()70

a system which, when m, and m, are different, is' reducible to
the system
du du du

It is clear that this cannot lead to a value of » satisfying
the given differential equation (1), because it takes no
account of the forms of S, U, and 7. Indeed if we actually
eliminate
@) du) du du
. dx) dy ’ @ ' d q

from the above equations by means of the system

du\ du du 1
=)+ >=r+-—8=0 )

(d?: dp dg ) (10),
du\ du  di '

)]
@ +‘71;s+@t=0
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(derived from the assumed first integral »=f(v) by making
J (v) =c, and differentiating the result first with respect to z,
then with respect to y), we find as the result

Vi+ R (s*—rt)=0.

Again, if we equate to 0 the two last factors of the right-
hand members of ?10), we have

d: d di
ml(z':)+T ‘TZ +V7'q‘=o,

m,(j—g)+T %)+VZ—Z=O,

which, if m, and 7, are different, reduce to-

du du du\
T Zy—)-}-V@—O, (-Z_E =0,

And it is evident that neither are these equations consistent
with the given equation (1), because they take no account of
8, U, and R. The equation of the second degree to which
they actually lead is

Vr+ T(s—rt)=0.

There remain then the two systems formed by combining
the first factor of each one of the first members with the
second factor of the other, viz. '

T dp
) g—:)+T Zu) V%=Ojk ........... (11),
@) rm@rg=e]
m(@) e r(@)eva=o
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That these systems are relevant to the solution of the fpro—
blem under consideration may be shewn by eliminating from
either of them by means of (10) the quantities

@ @ 54
The actual result will be

ViRr+ 8+ Tt+ U8 —rt) = V}=0uueevee. (13),

which, except in the particular case of V=0, reduces to the
given equation,

More generally, if in the equation

u=f(v)

u and v are any distinct solutions of the system (11), the
same result of elimination may be deduced. For v by hypo-
thesis satisfies the equations

() em () o

dz dy dp
m,(%) + T(Z—;)+ V%=o.

Subtract these equations multiplied by £ (v) from the corre-
sponding equations of (11), and representing w — f(v) by W,

we have _
dW) dW dw

() ()7 -

which being of the same form as (11) it follows that
W=0 or u—f(v)=0

alsb leads to the partial differential equation of the second
order (13). ,
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4. Pror. 1L 7o reduce the determination of the first inte-

grals of (1) to the solution of a system of ordinary differential
equations. ‘

Each of the systems (11), (12) presents u as satisf"ying
simultaneously two linear partial differential equations of the
first order.

To deduce the value of » thus conditioned it will obviously
suffice to multiply in each system one of the partial differen-
tial equations% an indeterminate multiplier A, to add the
result to the other equation so as to form a new equation
which will, like those%om which it is formed, be linear and
of the first order, and which on account of the indeterminate
character of A will be equivalent to the two. From the
auxiliary equations which we obtain in the process of solu-
tion, N must be eliminated.

If in this way we combine the equations of the system (11),

we have, on arranging the resulting equation according to the
differential coefficients of u,

d d
(B+2m)) S+ (m, + md—;

+ {Rp +mg +X(Tg +m,p)} g—:_

dﬁ du _

+ Vdp+)\.V@-'—0.
Hence we have the auxiliary equations
v __dy _dp_dy _ ds_
B+wm, m+AT V AV Rp+mg+r(Tqg+mp)’
du=0,

and it is to be remembered that m,, m, are the roots of the
equation

m*—Sm+ RT—UV=0.
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Eliminating A from the first four of the above equations we

have
Udg + mdx — Rdy =0
Udp + mdy — Tdx = O}
dz — pdx — qdy =0
This then is the system of ordinary differential equations

deduced from (11) upon the integration of which the determi-
nation of » will depend.

A similar system, differing from the above only in the
mutual transposition of m, and m,, is given by (12), viz.
Udg + mde — Rdy =0
Udp + mdy — Tdm:O} ceesencrenen s (IT).
dz — pde — qdy =0 o
If from either of these systems we can deduce two inte-
grals of the forms

u=a, v=2>,
it is obvious, from what precedes, that
| w=£(e) |
will constitute a first integral of the proposed (1), and there
bein% two systems in question, two such first integrals, each
involving an arbitrary constant may coexist.
5. Pror. 1v. To deduce the second integral of (1).

It will be necessary to consider separately the cases in
which m, and m, are equal and unequal.

First let m, and m, be equal.

Both the systems (I), (II) reduce to a single system which
may be expressed in the form

T m
dg:—%dx+ Ry [ posess .f;..‘(14);

dz = pdx + qdy
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Now, since the: condition gz=% is here satisfied, it is

manifest that if from any two integrals of the above system
of the forms 4= a, v=2>, simultaneous values of p and ¢ 'be
determined, these values will render the third equation ofg the
system integrable, and the effect of its integration will be
virtually to determine z as a function of «, y, and three arbi-
trary constants, viz. a, b, and a constant ¢ 1ntroduced in the
last integration. Let us represent the result in the form

2= (@, Y, @ b, C)eerernrirnniennnnnnn, (15).

Now what relation will this result bear to the general solu-
tion of the partial differential equation given, to the solution
which we should obtain by integrating, not the particular

uations u =a, v=2>,, but the general first integral u=f(v),
:r%ich includes them both.

To integrate the equation » =f(v) it suffices to deduce any
icular equation involving an arbitrary constant b, which,
n conjunction with u =f(v) will render

dz — pde— qdy =0

ntegrable, and to integrate the last equation regarding the
arbitrary constant of integration as an arbitrary fanction of
b. The result is a complete primitive in which, by the
variation of b as a parameter the general integral is implicitly
involved.

Now either of the equations »=a, v=25 will, in conjunc-
tion with « =f(v) determine p and ¢ so as to make

dz — pdx — gdy =0
integrable, Take the equation v =2, then u =jf(v) reduces to
u=f(®).

Thus, in Elace of the equations u = a, v =5, of the previous
section, we have

u=f(®), v=b
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for the determination of p and ¢. The constant ¢ introduced
in the final integration becomes also, according to the above
theory, a function of. b, and the complete primitive is of the

form
z=¢{x, y, b, f(8), ¥ ®)}.eeuerrennnn(16),

while the general integral is found by‘eliminating b between
this equation and its differential with respect to &.

The general integral therefore represents the envelope of
the surface represented by (15), a, b, ¢ being parameters sub-
ject to any two connecting conditions,

As m,, m, are supposed equal, a necessary condition of the
possibility of this species of integration is that

8= 4(RT—TUV)=0..ceeueeenenn.n. (17),

the value of m is g , and the system (14) reduces to

U(Zp+-gdy—Tda:=0

qu+§dx—Rdg/=0 ................ (18).
dz — pde — qdy =0

We conclude therefore that if (17) be satisfied and we can
from (18) deduce a value of z vn terms of =, y, and three
arbitrary constants, the equation expressing that value will be
a complete primitive, and the general integral will be found
by making the constants vary in subjection to two arbitrary
conditions. ‘ "

Ex. Let the given equation be
aqr + ypt + wy (8" —rt) = pg.
Here B==g, §=0, I'=yp, U==y, V=pq.
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The condition (17) is satisfied, and (18) becomes
xydp — ypdx =0,
aydg — wgdy =0,
dz — pdx — qdy = 0.
From the two first of these we find
p=az, g=by,
whence from the third,
z= g + I%’ +c.
This is the complete primitive, and the general primitive

consists of all possible equations derived from this by making
a, b, ¢ vary in subjection to two conditions.

Ex. 2. Given
. _—
14 ¢°)r—2pgs+ (1+p°) t— a’r
(+g)r=1pe A+ + o)
=—(1+p"+ N

Here the equation for m reduces to
m*+ 2pgm + p'¢* =0,
whence m = — pg, and the system (18) gives

'(T'_F—’j{q_'_l_g,)*+pqd$+(l+q’)dy=0,

d : .
(—ITP%_?.)?,+P9dy+(l+p')dz=o,




ART. 5.] OF THE SECOND ORDER. 161

Subtractiné the upper equation multiplied by pg from the
lower one multiplied by 1+ ¢% and dividing by 1+ p*+ ¢*,
we have

L+ dp—pedg _
a+p+t 7
whence
__r  _
w+V(¥+p'+q’) a.

In like manner,

7  _
AV CE e ek

Hence determining p and g,
dz = (x—a)dx+ (y—b)dy

T V{I—(@—ay-(y-07}"
Therefore (x—a)’+ (y=08)'+ (z—0)*=1.

From this form of the complete primitive it is evident that
the general integral will represent all possible tubular surfaces
formed by the motion through space of a sphere of constant
radius unity. :

Secondly, let m, and m, be unequal.

Then since, in neither of the systems (I) and (II) is the

condition % = gg satistied, from neither system separately
can values of p and ¢ be obtained which make dz = pdx + ¢dy

integrable.

But, as will be shewn, any two intefgmls obtained, the
one from the one system and the other from the other, will
give values of p and ¢ which will render dz = pdx+ gdy in-

B.D.E. II. 11
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tegrable, and the general solution will consist of all possible
integrals of the latter equation thus obtained. '

Or if the complete first integral of either system be com-
bined with any particular integral involving an arbi
constant obtained from the other, the two will furnish values
of p and ¢ which render dz=pdxz+¢dy integrable, and its
integral will be a complete primitive involving one arbitrary
function in its expressed form, another in the connexion of
its two constants; the general primitive being found in the
usual way by making the constants vary as parameters in
subjection to a single arbitrary connecting condition,

In fact it may be shewn that if we attempt by the process
of Charpit or Lagrange to integrate the partial differential
equation of the first order » = f (v), deduced we will here sup-
pose from the system (1), we virtually construct the system
(1) in the auxiliary equations upon which the process of
solution turns. I have obtained a direct proof of this proposi-
tion, but I think it preferable and at the same time sufficient,
to direct attention to the prior ground upon which it rests in
the relations of the systems of partial differential equations
(11), (12) from which the systems of ordinary differential
equations (1), (1) are derived.

Let P=0 represent any integral of the system (11), and
@ =0 any integral of the system (12). Then we have

-7 =2 +m (%)

|

d
rEen@enlf
d dQ

R S

- Vj!—?=‘ml(%)+T(

)
9.

s &

&
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-V (@) -5 @7 (@)% &)
< (). ()19 {3 (40 (2D
) 7)) (9 (20} ().

The second member of this equation is identically 0. Hence
dwxdmg by V we have

(60 -20() 4 2P (29) 29I, ... .

Bat this is the known condition under which the values
of p and ¢ deduced from the equations P=0, Q=0 make
dz = pdax + qdy integrable ; see C?hap X1v. Art. 13, Equation

(36).

We conclude then that if from the system (1), (11) we can
deduce two corresponding systems of integrals .

v,=a, v,=b,
u,=a,, v,=b,
then will the first integrals of (1) be
w=£) u=f0) . '

while the second integral will consist of all possible relations ob-
tavned either 1st by specifying the forms of Jir £, and obtammg P
and q as functions of « and y and integrating dz = Za + gdy,
or 2ndly, by specifying one of the functions f,, f,, leaving the
other arbitrary, determining p, g, integrating dz = pdx + qdy,
and regarding the final constant of integration as an arbitrary
parameter.

11—2
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Ex. Given ar+bs+ct+e(s®—rt)=h, the coefficients
being constant.

Here R=a, 8=b, T=¢, U=e¢, V=Ah.
Hence m,, m, are the roots of
m*'—bm +ac—eh=0,
and the systems (1), (11) give
edg + mdx — ady = 0}
edp+mdy —odw=0)’
edq+m,da:—ady=0}
edp + mdy—cde=0)"
‘Whence the first integrals are
eg +mx — ay =f, (ep + m,y — ex),
eg +m@ —ay =, (ep+m,y — c),

" from which all possible second integrals are to be derived in
the modes above explained.

Let us take the second of those modes and give to the
second of the above first integrals the particular form

ep+my—cx= C,

C being an arbitrary constant. From this, and from the
other integral, left in its complete form, we have

p=Z=my+C _ay=matf{(m=m)y+ C}
e 1 4 e ’

whence, substltutmi in the formula dz=pdx + qdy, mte-
grating, replacing the arbitrary form

[ @ de vy m—m) ¢ @,
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and introducing an arbitrary function of C for the arbitrary
constant, we have

s=4 |G- may+ %ok Cot ¢ (m—m) y+ 01+ 4. (0

for a com{)lete primitive. The general primitive consists of
all possible relations obtained by eliminating C between the
above equation and :

0 =16[m+¢' {(m,—ml)y+ 0}] +‘I‘" (0),

when the forms of ¢ and v are specified.

Becond Investigation.

6. If from the equation

Rr4+8s+ Tt4+ U8 —rt)=TVieervureannnnn (20),
we eliminate # and ¢ by means of the equations
dp =rdx + sdy,
dq = sdx + tdy,

the result will be
[Rdy* — Sdzdy + Tdx* — U (dpdz + dgdy)] s
= Rdpdy + Tdgdx — Udpdq — Vdzdy ...... (21).

There are different considerations (all of them however in-
volving, as I have been led to think, a more or less explicit
reference to some theory of the genesis of the given partial
differential equation) which indicate that its solution depends
upon that of the equations obtained by equating to 0 the part
agected and the part not affected by s, viz. upon the solution
of the equations :

Rdy* — Sdzdy + Tdx* — U (dpdx + dgdy) =0...... (22),
Rdpdy + Tdydx — Udpdg — Vdxdy=0............. (23).
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‘Without entering into.these considerations let us inquire
what consequences may be deduced from these equations
assumed to be true.

It is seen that these equations are connected by a remark-
able reciprocity with the partial differential equations (7).
They will in fact be converted into these equations if we

change
da, dy, dp, dg, U, V, 8 eovvviriiniinnninnen (24),

into

du du du du

dy’ dw’ dg’ dp’
respectively. From this formal connexion it follows that if
we multiply (22) by M\ and add to the result (23), we shall be
able to determine A 80 as to permit the resolution of the equa-
tion thus formed into linear factors. Ultimately we shall, as
agf)ears from Art. 3, reduce the system (22), (23) to an equi-
valent system of the form

(— Bdy —m dx + Udg) (— mdy — Tdx + Udp) =0,
(- Rdy — mdx + Udg) (— mdy — Tdx + Udp) =0,
m, and m, being determined by the equation
m'+Sm+ RT—- UV =0,
or, changing the sign of m,
(= Rdy +mdx + Udg) (mdy — Tdx + Udp) = 0} (26),
(— Rdy + mdx + Udg) (mdy — Tdx + Udp) =0
m, and m, being as in the former investigation roots of
m—Sm+RT-UV=0.

Equating to 0 the corresponding factors of the first mem-
bers we have ‘

1R 7/ S (25)

— Rdy + mdx+ Udg=0
— Rdy + mdx + Udg=0}’
m,dy — Tdx+ Udp =0

mydy — Tdax + Udp = 0} )



ART. 6.] *  OF THE SECOND ORDER. 167
) tThe, first of these, m, and m, being different, is resolvable
S Udg — Rdy=0, dz=0;
the second into

Udp— Tdz=0, dy=0,
and it is obvious that neither of these can lead to the given

partial différential equation (1). The first of them combined
with the equations

dp =rdx+sdy, dg=sdx+tdy......... (27), |
leads in fact to the partial differential equa.tion‘
B—Ut=0cucccccereuunenn.. aeensesansss (28),
the second in like manner leads to
T—Ur=0 .ccceruvveiniirnnenennnnnn. (29)

But equating to 0 the non-corresponding factors of the first
members of (26) we have

— Rdy + mdx + Udg = 0}
mdy — Tdx + Udp =0)’
m,dy — Tda + Udp = 0}
— Rdy + mdz + Udg =0 )
Now these systems when completed by the equation

dz = pdx + gdy agree with the systems (1), (11) deduced in the
previous investigation.

It remains to shew that these systems actually lead to the
given partial differential equation (1) directly. Eliminating.
from either of them, combined with the system (27) the dif-
ferentials dz, dy, dp, dg, we shall have as the result

U{BRr+8s+ Tt+ U (8*—rt) — V}=0....cu.0. (30),

which, rejecting the factor U, as from (13) we rejected V, is
the differential equation proposed,
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Ground of the Reciprocity above noticed.

7. The reciprocitz above noticed is not of a primary cha-
racter, but is founded upon two prior laws which I shall pro-

- ceed to demonstrate.

If from the partial differential equations of the system (7)
we eliminate 7 and substitute the resulting equation in the
place of the first equation of the system we shall obtain the

equivalent system
R(%)’—s% Z——Z+ T(%)’ . )
* U{(%) Z_;+ (Z_;) Z_Z} =00 e
2 2
2(z) +5(@)E5) ()
@5+ @a-o)

These equations are both symmetrical and it will be ob-
served that they are convertible the one into the other by

changing

du du du du
& B &y U, S,‘V .......... (32),
into -

du du du du

& &y G dp’ V,-8 U ..... (33),
respectively. This is a law of reciprocity which connects

sole}g: the differential coefficients of % and the coefficients
U, 8, V of the original equation.

Again 4 =0 is by hypothesis a solution of the given partial
differential equation. Regarding it however simply as an
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equation which is frue and the truth of which is consistent
with that of the equations

dp =rdr + sdy}
dg = sdx + tdy.

and differentiating it first with respect to @, secondly with
respect to y, we have

du  dudz dudp dudg
_l'+§_l+¢_i§_l+-( T
du dudz dudp dudg
Bt E Gy T a &y

=0,
=0,

equations to whicﬁ we may give the form
;_ @) =7 du + @
@)%+

(@)=t

Now this system is of the same form as the system (27)
and will agree with it if we change

du du du du :
_%,—"—l?/, d'_p’ E‘q ................... (35),

into

respectively—a change which does not affect the coefficients
of the given equation, and which is therefore the expression
of a law of reciprocity distinct from that last noted. The
combination of Sxese two laws does however lead to the
law exemplified in the researches of the previous Article ;
see (24) and (25).

The question here arises whether it would not have been
better to employ from the first the symmetrical forms (31) o
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the partial differential equations of the first order and second
degree upon which » depends, than the unsymmetrical forms
(7). It was indeed from the symmetrical forms that the
chief results of this Yaper were originally obtained, but the
unsymmetrical forms lead to the same end in a simpler way,
and therefore they have been made use of in the present
memoir.

It may be proper to notice, in concluding this section, that
the symmetrical forms in ordinary differentials would have
emerged in place of the unsymmetrical ones of (22) and (23),
if the quantity s*—~¢ had been retained instead of s. The
equations '

dp =rdz + sdy, dg=sdx+ tdy,
enable us in fact to reduce the given equation (20) to the
form Rdp* + Sdpdq + Tdg* — V (dpdx + dgdy)
= (s — rt) {Rdy*— Sdady + Tda* — U (dpde + dqdy)}.
Hence arises the symmetrical system
Rdp* + Sdpdq + Tdq* — V (dpdz + dqdy) = 0,
Rdy* - Sdady + Tda? — U (dpde + dgdy) = 0,

which is connected with the system (31) by the single law of
reciprocity expressed in (35) and (36).

Postscript.

8. At the time when the above investigations engaged my
attention I was totally unaware that the subject of them had
been discussed by Ampere (Journal de I’ Ecole Polytecknique,
Tom. x1.) and recently by Professor De Morgan (Cambridge
Philosophical Transactions, Vol. 1x. Pt. 1v.). I feel it there-
fore incumbent upon me to state why after acquainting my-
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self with the results of their labours, I offer this paper for
publication.

The method of Professor de Morgan so far resembles the
first method of this paper, and that of Ampere the second,
that while the former makes the solution of the problem
depend directly upon that of simultaneous partial differential

uations of the first order, the latter makes it to depend
directly upon the solution of simultaneous ordinary differ-
ential equations of the first order. The formal connexion of
these methods by the law of reciprocity is, I believe, esta-
blished for the first time in this paper. The system of partial
differential equations of the second degree (7) has not, so far
as I am aware, been given before.

But a point which I think of deep importance is the follow-
ing. By connecting, as in this paper, the differential equa-
tions of the second degree, whether ordinary or partial, by an
indefinite multiplier which is afterwards determined so as to
admit of the resolution of the system into its component linear
elements, we assure ourselves that each step of the solution
offers a complete sequence to that which has gone before, and
it only remains then to separate the different elements and
determine whether they are relevant or irrelevant to the end
in view. That any such distinction exists has not, so far as
I am aware, been noticed before. And it seems to me the
more important that it should be noticed because the solution
of partial differential equations in cases far more general than
those above considered seems to depend upon the satisfaction
of simultaneous differential equations of a degree higher than
the first. I have in fact by an application of the Calculus of
Variations arrived at the conclusion that the theory of the
solution of all partial differential equations of the second
order, whatever the number of variables may be, is very inti-
mately connected with the satisfaction of a system of differ-
ential equations of the type

dF dF dF

F'=0 representing the given partial differential equation, =
and y any two of the independent variables, and 7, s, ¢ the
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second differential coefficients of the dependent variable with
respect to z and y.

I may perhaps at some future day resume the subject, to-
gether with an inquiry into the theory of the solution of the
partial differential equation of this paper, when the conditions
under which the auxiliary equations (1), (11) are supposed to
be integrable are not satisﬁa

9. Nore. It may be desirable to establish directly the
converse form of one of the results of Proposition 1v. For
this object we shall shew that the equation of the envelope of

2=¢ (2,9, @, b, €)eeereurrncenienrnnnncannns (1),
where a, b, ¢ are connected by any two conditions of the
forms

*(a’ b’ c) =0, x(a1 b; c)=07
will satisfy a partial differential equation of the form

Br+ 8+ Tt+U(8—rt)=V ceureuennnnnnns (2),
in which also

S*=4(RT-TV).
Differentiating (1) we have
_dp dpda dp db do dc
Ptk d &t &
_9¢, d¢pda, dpdb db de
=Y aadyt b oyt d dy
and by the nature of an envelope these reduce to
% _d
P=7> g_d—g/ ...................... (3).

Again differentiating these equations with respect to = and
¥y, and writing for simplicity

To_y E_p T4,

dadx dbdx "’ dedx
X IR < N S
dady =4+ Tdy=5" @ay=
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we have
db de
Ad +Bdm+ Od:c’

da ., db de

FARE Y +0d

r=Zo,
da?
a’¢
= Tudy 4

dae . 0,
8= y +Adw+B'—-—

o g%, 5D, 0"’

=tiatty

. Hence we find
(o~ ) =~ (=) (= 5)
db dc>

=(Ad“ +B‘f’ G?)(A'Z:"'de"’o'd
de

dy
~(aZ s 0B (4t rio )

= (4B -4'B) (fil—; b _da %’)

’ ’ (k da dc da

Now since a, b, ¢ are connected by two conditions, so that
b and ¢ are functions of # and y only as being functions of a,
we have

Gd _dd_, B _dde_,
dyde dx dy  ° dydx dedy
dc da dc da
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Thus the above equation reduces to
28~ () (5o
or

(£¢ d!¢ dl¢ : di‘b d2¢ d’¢ L ]
B Ty g T =T T (dw—-dy v (4).

This equation is of the general form (2). Its coefficients
d*¢
dy2 ’
the form of the complete primitive (1) is glven. For this
purpose the complete primitive with the two derived equations
(3) suffice.

&c. are determinable as functions of z, ¥, 2, p, ¢ when

Again, comparing (4) with (2) we have as the conditions
of their equlvalence

5

¢ TdeTe_ (Y
o dzdy &2 4

(

conditions which suppose R, S, T, U, V connected by the
relation
8*—4 (RT-TUV)=0.
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CHAPTER XXX,
ADDITIONS TO CHAPTER XVIL

[THE present Chapter consists of additions to Chapter xvII.
Art. 1 was intended to follow Chap. xvII. Art. 1.]

1. The theory of the solution of linear differential equa-
tions in a series flows very beautifully from their symbolical
expression. It is usual in treating this subject to assume the
form of the series, and deduce from the differential equation
the law of its coefficients ; but the symbolical form of the dif-
ferential equation determines in reality the form of the solu-
tion as well as the law of derivation of its successive terms.

Let us begin with the binomial equation
L (D)u—f,(D) e?u=0,
Operating on both sides with { £, (D)}, we have
u—¢D) fu={f(D)}"0,

in whi ='f—‘@—)
in which ¢ (D) D)
Hence {1-¢(D) €*lu={f,(D)}0.

. Now {£,(D)}70 will be determined by the solution of a
linear differential equation with constant coefficients, and will
be necessarily of the form

AP+BQ+ CR+...,

in which 4, B, C,... are arbitrary constants, and P, Q, R, ...
are functions of the independent variable.
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‘We have then
1-¢(D)e}u=A4P+BQ+CR+ ...,
therefore u={1— ¢ (D)%™ (4P+BQ+ CR+ ...).
Now let us represent ¢ (D) €™ by p; then
u=(1-p)" (AP+BQ+CR+...)
=(1+p+p*+p°+...)(AP+BQ+ CR+...)
=4A(1+p+p'+p*+..)P
+B(l+p+p'+p"+...) Q
+C(l+p+p'+p+...) R
+...

.Represent the first line of the above expression by u,,
then since

=0 (D) e¢(D)€?... m times
=e"¢ (D +mr) p(D+mr—r7)...... ¢(D+7),
we have
u=A{P+e’¢p(D+7r)P+ep(D+2r)p(D+7) P
+e¢(D+3r)p(D+2r)p(D+7) P+...},

in which it only remains to perform the operations indicated
by ¢(D+7), by ¢(D +2r)p(D+7), ... on the function P.

Let us in the first place suppose the symbolic function
f, (D) to be of the form (D —a) (D —¥5)...; then

(£, (D)}*0=A4e® + B + ....

Here P=¢". Hence substituting in the above expression
for u, and observing that (D) ¥ = f(n) €®, we find

u,=Ae? (1 +¢(a‘+‘r) e+ pla+2r)pla+r) e+,
or, since =z, . '
uy=Ax*{1+d(a+r)a"+Pp(a+2r)p(a+r) ™ +...};
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and
u=Az*{l+pla+r)a"+P(a+2r)p(a+7r)a"+ ...}
+BP {1+ B+ +dB+2r) (b +7) 2" +...}
+ .y
the solution sought.
Consider now the general equation
So(D)u+f, (D) u+... +f,(D) e®u=0.
" Here we have, representing j};%g—; by ¢,.(D),
{14+ ¢,(D) e+ ... + ¢, (D) € u={ f,(D)}70;
therefore
u={1+¢ (D) +...... é. (D) e { £, (D)} 0.

Here we have first to determine {f,(D)}™0, then to deter-
mine the effect of the operation represented by ‘

1+¢,(D)e+...... ¢, (D) ¥}
upon this. : .
Now {f,(D)}0 is given by the solution of a linear diffe-

rential equation with constant coefficients, and will therefore
be of the form

AP+BQ+CR+ ...,

A4, B, C, ... being arbitrary constants, and P, @, R, ... func-
tions of 4.

Again, since
{1+ ¢,(D) € +...... + ¢, (D) M}
1
Tite,D)E+...ns + ¢ (D) e’

it may be shewn by a process of actual symbolical division,
B.D.E. IL - 12
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attending to the laws of combination of symbols, that the
expression may be expanded in the form

F,(D)+F,(D)é+ F,(D) e +....

To determine the functions F,(D), F,(D),...... we may
proceed as follows. From the equation '

1+¢, (D) +......... + ¢. (D) ¥}
=F,(D)+F,(D) ¢+ F,(D) e’ + ...
we have ‘ :
1={14,(D) €+ ... +$,(D)e¥}{F, (D) + F,(D) &+ F(D)e¥+...}
=F (D) +{F,(D) + ¢,(D) Fy(D = 1)} + ververuerurnnes ().
Hence ~ F,(D)=1,
' F.(D)+¢,(D)F,(D—-1)=0;
therefore F,(D)=-¢,(D)F,(D-1),
and so on. Hence F,(D), F,(D),...... are determined in suc-

cession. The genera'i law is as follows: the coefficient of
€™ in the second member of (1), when m is greater than 1, is

Fm(D) + ¢1(D)Fm—1(D - 1) +¢!(‘D)FM(‘D - 2) Foee (2)’
whence ‘ ‘
Fo(D)==$D)F,(D=1) = (D) F, ,(D=2) ~....
By this formula the successive values of F,, (D) can be
deduced from those of F,_ (D), F, ,(D),....

m-3

Combining the above results we obtain thus for 4 the ex-
Ppression

w={1+F (D)@ +F,(D) ®+..}{AP+BQ+..}
— A{P4+ F,(D) SP+ F,(D) #P+ ...}
+B{Q+F,(D)eQ+ F,(D)*Q+...}
+ eeee

Let us in applying this expression first suppose that the
factors of - £, (D) are real and unequal, so that ff {)D) is of the
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form (D —a) (D —8) (D —c).... Further, let us suppose that
no two of the quantities a, b, c, .... differ by an integer.

Then {£, (D)} 0=A4e®+ BH+....,
whence we may assume
P=e¢®, Q=¢,....
Thus the expression for » becomes
A{e® + F,(D) 8 + F,(D) €04 ,..}
+B{+ F (D) W4 F,(D) ™™ 4 ...}
+ .
or, since ' F (D) e =F (m) e™,
u=A{+ F (a+1) "+ F, (a+2) 90+ ....]
+B{&+ F, (5 +1) "+ F, (b+2) ™0 1 ...}
+ e '
Hence, replacing € by =,
u=A{+ F,(a+1)a™ + F,(a+2) & +....}
+Bi@?+F.b+1) "+ F,(b+2) 2" +....}
+ ...

In (2) replace in like manner D by a+<7 and we have,
putting ¢ for m,

Fia+3)+ ¢, (a+7) F la+7—1)
+¢(a+7) Frp(a+i—2)+...... =0,
or, if F(a+1) be represented by u,,,
Yot By (@ +1) Uppey + by (0 +9) Yoy + evenee =0
Put m for a+ ¢, thus ]
U+ by (1) Uy o+ By (1) g+ v = 0

This agrees with the law established in [there is no refer-
ence in the manuscript, but the law intended appears to be
that given in Chap. xvII. Art. 9.]

12—2
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Secondly, suppose that » of the factors of £, (D) are equal
and of the form D —a.

Then {£,(D)}™0 contains a term of the form
?(c,+cl+cl+...... + 6, 07).

Hence the corresponding portion of u is of the form
{1+ D) @+ F (D) o €9 6 4ot 0,07

= {e"" +e*F (D + a+1) + ¥ F, (D +.a +2) +} ...(3)
where v stands for ¢, + ¢,0 + ¢, + .... +¢, 0™
Now FE(D+a+7)v
={F;(a+1)+E’(a+1)D+F¢"(a+1) 1—D%+} v,

which on performing the differentiations becomes a polyno-
mial of the form

‘We see thus that (3) will assume the form of a series of terms
ef, ¢, ... each multiplied by a polynomial of the (r —1)™
degree in 6. Or arranging the terms otherwise it will con-
sist of a series of terms of the form

in which B, B, ..... B, , are series involving €%, €19,
e L. Or lastly, changing ¢ to z, the portion of » in .

question is of the form
B,+ B, (log ) + «..... +B,_, (log )™,

B, B,,.... B_, being polynomials in each of which the lowest
power of z is 2° and the successive powers increase by unity.

This establishes the assumption in [there is no reference

in the manuscript; probably Chap. xviI. Art. 10 is to be
supplied.]
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Thirdly, let f,(D) contain » factors D—a,, D—a,,...D—a,

in which a,, a,, ... a, differ from each other by integers, toge-
ther with other factors.

The portion of u corresponding to the factor D — a, will be
UL+ F,(D)+F,(D) ¥ +..} 4%,
in which
Fo(D) e = {$,(D) @ .., (D) &

+¢,(D) M F. (D) ™ 4 } .
Thus F,, (D) €™ consists of terms of the form
$u(D) €°F,, (D) e,

¢ being one of the numbers 1, 2,....n. Hence F,, (D)™
will consist of terms of the form .

. $(D) ¥ _Fm.u(D) e,

7 being one of the numbers 1, 2,...7n. Continuing this until
47+ k+ ...=m, we see that F, (D) " will ultimately con-
sist of terms of the form

$u(D) °¢;(D) * ¢ (D) €9 ...,

4,7, k, ... receiving arbitrarily any of the values 1, 2, ... n,
and ¢+7+k+ ... being equal to m.

Thus the portion of u derived from Ae* will consist of
all possible terms of the form

A¢(D) ¢,(D) # ¢, (D) ... ()
= Adi(D) ¢y(D — ) (D — £ =7) oo ™0

_ARDVED =) AD =i =)) - quru,
FDRD=3f,@=5=])
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Let i=a, t+5=8,.....t+5 +k+..... excluding the last
term = x; and let the symbolical numerator which involves
only direct functions be represented by £ (D), and we have
' 4Af (D)

S DV LD =) f,(D=B) eeeefo (D= 1)

in which a, B, .... u#, m are integers ascending by differences
not exceeding n. '

emrene,

[A few lines of the manuscript here are obscure, and I
venture to express in other words the idea which seems to be
involved.

Let D — a, denote one factor of £, (D), then the correspond-
ing factors in the denominator of

AF (D) e .
-ﬁ)(D)f:,(D—a)j';(D_ﬁ) "':ﬁ;(D—‘Fr) ........ ,
are - (D-a)(D-a,-a)..... (D—a,— ) eeveecens (5).

" Now if a, is not greater than a,, then a,+p is less than
a,+ m; hence no factor in the expression (5) can be identical
with D—m—a,. But if g, is greater than q,, then one fac-
tor in the expression (5) may be identical with D —m —a,. -

Hence it follows that the denominator of the expression (4)
may contain D —m —a, to the power »—1, but not to a
higher power.] :

And, since
(D —m — a,) eV etma
= e("""'""{co +e0+...+6,07 + fr::l} ,
we see that « will contain 7 sets of terms together of the form
A + B(logz) + C(log z)*+ ..c... + K (log =)™,
A, B, C.... being polynomials in z.

This establishes the rule in [there is no reference in the
manuscript; probably Chap. xvir. Art. 10 is to be supplied.]
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here is no hint in the manuscript as to the position
which Article 2 was intended to occupy; and the reasoning
does not seem fully developed.]

2. Pror. The solution of the equation
' £(D) u+£,(D) 4+ vur.. +o(D) ¥u=0
being expressed in the form
{1+ F,(D) &+ F,(D) &+ ... H} { £ (D)},

it is not necessary to introduce new constants in interf)reting
E\(D), ....; it suffices to interpret particularly if only uni-
formly and consistently.

For let
{£,(D)f'0=AP+BQ+......;
and in interpreting
F,(D)e™ (AP+BQ+......)

let a new constant be introduced which was not in the inter-
pretation of :

F, (D) e™% (AP + BQ+......).
Now  F,.(D)e+¢,(D) € F, (D)™™

+ ¢, (D) ¥ F, (D) €™M+ ...... =0,
therefore

F,(D)em - é,(D) & F, (D)™ —_..,
=—{£,(D)F*{f.(D) €F,_, (D) ™"+ ...},

hence the new constant comes from {f,(D)}*0, and the term
containing it must be A4'P, or B'Q, ...., where 4', B'.... are
constants. Suppose it 4'P; '

then as derived from this,
F, (D) ™o (£ (D)} 0=—¢,(D) SAP,
F (D)™ (£, (D)} 0=— ¢, (D) @ F..,, (D)™ ¥ 4P
= b, (D) M F. (D) e™A4'P.
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Thus  Fi,,) (D)™ ¥ =—¢,(D) & F,,, "0
- ¢9 (‘D ) e F, mi-se(MMw

The law of derivation is exactly the same as in the deri-
vation of F(D) ¢® from F;_ (D) 7%, ...... :

[Art. 3 seems intended for a reconstruction on an extended
scale of part of Chapter xviI. Art. 3.]

- 3. We proceed to consider more fully the theory of the
binomial equation A

u+ ¢ (D) e®u="U.

Now the possibility of solving the equation depends upon
the nature of the symbolic function ¢ (D). It is perhaps the
most general account of the present state of the theory to sa
that there exist certain primary forms of this function whicﬁ
render the equation solvable, and that to each of these pri-
mary forms an infinite number of the forms are reducible by
general theorems of transformation. As these theorems
admit of a statement which is independent of the form of the
function ¢ (D), we shall establish them first. :

Pror. 1.  The function ¢ (D) in the equation
‘ u+ (D) e?u=U
can without otherwise changing the first member of that equa-
tion be 1st affected with any constant factor, or 2ndly con-
verted into ¢ (D + a), or 3rdly converted into {¢ (— D)}™.
First, Let U=f(¢), and in the equation
u+¢ (D) Pu=Ff(),

l B
let €=a"¢’. ’];hen d% = %, , and fhe equation becomes

u+ap(D) Tu=f(a'e),
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. . d
in which D= 7

Thus ¢ (D) has been affected by a con-
stant factor a. '

Secondly. In the same system let u=e*v. Then’
v + ¢ (D) v = f(€),
or v+ ¢ (D+ a) v =Ff(¢),
therefore v+ ¢(D+ a) v =€ f ().
Here ¢ (D) has been changed into ¢ (D + a).

The result of this transformation may be conveniently ex-
pressed by the following theorem.

The equation
ut+P(D)etu=U
will be converted into
. v+p(D+a)v=V
by the relations
u=e%y, U=e?V.

" Thirdly. In the same equation let  =—6"; then

a__d
‘ de— ~ de’
and we have
u+¢(-D)eu=F(),
in which D= 4 Hence

. ao'’
utep{— (D —r)lu=F(?);
therefore ut d(r—D)u=e?f(e*),
whence w+{¢(r — D)} e u={p(r— D) T f(?). -
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In this equation let w = ¢, TRen by the last theorem,
v+H{g(- D)7 v ={p (- D)} f(¢™).
Thus |
u+¢(D) u=f(€)
18 converted into
v+{p (- D) eTv={$(— D)} f(¢),
in which D = % , by assuming

==0, u=ev.

The above transformations leave the index r in the first

member unchanged. If however we assume 9=%, whence

t% =q Jie, , we should have

u+t ¢(aD)e% =f(e.—‘:). '

By combining this with the previous results we see
that it is gossib e to convert ¢ (D) into ¢ (aD + b), and into

1

{¢(aD +B)}.

But the most important transformation of the function ¢ (D)
is that which is established in the following proposition.

Ar[tThe proposition referred to is Prop. 111. of Chap. xvII.
. 3]

[Article 4 was intended to follow the words “ or subse-
quently in the derivation of 4’ in Chap. XVIL Art. 4.]

4. It becomes therefore important to establish rules for

the treatment of the constants which in these different ways
arise.
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Now the entire process 8f solution consists of three stages,
namely : ’ :

1st, the determination of ¥ by the equation

_p¥D
=Eso "

2ndly, the solution of the transformed equation
v+ (D) efv="7,

3rdly, the determination of u by the relation

-p ¢D
u=DP, +D) .
Let us consider these separately, supposing ¢ (D) to con-
D+a '

tain a single factor

D+ which is made to disappear in the

generation of 4 (D), so that @ and & differ by a multiple of ».
Thus the given equation is of the form

D+a

“~5%3 V(D) ePu=TU......cccuun.. (6).

The transformed equation is of the form
v—Y(D)e?v=7,

. . I 5, D+a _pD+b
in which u—-.P,m‘v, V—.P,D—_l_a U.

First, suppose @— b =nr, where n is positive.
Thus
u=(D+a)(D+a—7)...(D+ta—nr+r)v,

V= {(D+a)(D+a-r) (D+a-m+r)}'.l U
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Hence .
u=(D+a)...(D+a—nr+r){1—4 (D)e’}'V
=D+a)...(D+a—nr+7r){l —4(D) e”}"{Ul+ Ce=®

+ Cet™ 4 ... + C,e-("*'"w} (),

where U, is a particular value of
1

{(D-{- @) we. (D+a—nr +.r)}— U.

The part containing the constants will consist of terms of
the form :

(D+4a)... D+a—nr+71) {L—(D)e?? Cte™®
=(D+a)(D+a—1) ... D+a—nrtr) {1 F (D) e
+9(D) 'y (D) *+ } Ceee
=C(D+a)(D+a—1)... D+a—nr+r) {e-(ﬁ,),,
FHD) LY (D) (D - )L,

Now all these terms vanish up to the one containing
™2 therefore we have to perform the operation

CD+a)(D+a—7)...(D+a—nr+7r) on
@YD ..y @=jr) e
+ ¥ (D) YD =1) e 4 (D —jir —7) e"“‘””+....},

where j=n—17—1; that is, we have to perform the operation
CD+a)(D+a—r)...(D+a—nr+r) on

{‘!" (D) Y (D =1)uee A (D —jr) =0
+9 (D) Yy (D) ... 4 (D -;jr) oo }
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Now ¥ (D) Y (D —7) ..oy (D —jr) =0

= (nr — a) Y (nr —r —a) ... ¥ (nr —jr — a) e-(o-mo.

= _Be’(“")o;

_ therefore we obtain

BC(D+a)... Dt+a—nr+r) {6—‘H')o+1lt‘ (D) ee==¥ 4. }

=BC(D+a)...(D+a—nr+7) {H«p(p) @
+ 4 (D) €4 (D) e"+....} (om0,

Thus this expression is the same in form for all values of
t. Therefore all the terms containing an arbitrary constant
in (7) are equivalent to only one term.

Secondly, suppose @ —b = — nr.
-1
Then u={(D+ ) (D+b—-r)...(D+b—m'+r)} 0,

V=(D+b) (D+b=1) . (D+b—nr+r) U.

Here there are no constants in V. But » contains n arbitrary
constants not in v, and as there is no subsequent process in
the method for destroying these or reducing them to mutual
dependence, it is necessary that the relations connecting them
should be sought by comparing the solution with that given
by the method of development in series.

Note. It would be better to reduce (6) to the form
D 70, —
U - .D_—-a ‘\Il’ (.D) u=U
before the demonstration.
- [Article 5 was intended to follow Chap. xvi1. Art. 7.

There is a memoir by Professor Boole on the subject of this
Article, entitled On the Differential Equations which deter-
mine the form of the Roots of Algebraic Equations. The
memoir occupies pages 733—755 of the Philosophical Trans-
actions for 1864.]
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5. If we agree to regard as prémary those forms of bino-
mial equations which are integrable but not through an,
reduction effected by the Propositions of Art. 3, and to whic
equations through the application of those propositions other
equations are reducible and so made integrable, it becomes
very important to enquire what these primary integrable
forms are. It does not appear at present possible .to give a

neral answer to this question, but so far as is known, such
%:rms if belonging to differential equations of a degree higher
than the first stand in a remarkable connexion with the
theory of algebraical equations. By the study of this theory
Mr Harley was led to the conclusion that y defined as an
implicit function of by the algebraical equation

YP=ny+n—1)Z=0.0rcererrieurcness (8),

n being greater than 2, satisfies the binomial differential
equation

_2n—1 _8n—2) D_n"—n+1
-"‘( nD()lg——l) - )( VErETY )e(m =%

in which €=a. In this expression the factors of the nume-
rator are equidifferent, as of the denominator, their common

difference being n_;_l’ but the equation is not resolvable by

Propositions 11. and 111, into forms, the integrability which
had before been recognised.

The above result first reached by induction was confirmed
by Mr Cayley by the aid of Lagrange’s theorem.

To the form (8) all algebraic equations of the third, fourth,
and fifth degrees are known to be reducible.

Mr Harley has subsequently found that y considered as a
function of 2 defined implicitly by the equation

Y—ny'+ (n—1)2=0
satisfies the symbolical differential equation
2" [(n—1) DIy — (n —1) (0D — n —1) [nD — 2] "%y
: : =[n—-1]""¢
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the factorial notation according to which
[m]*=m(m—1) (m—2)...(m—n+1)
being here adopted. '

These results are implicitly involved in a more general
theorem which I shall now demonstrate. ‘

THEOREM. If y,, Y,.-... Yu are the n roots of the algebraic
equation

Y -ayt+1=0,

and if the m™ power of any one of these roots be represented .
" by u, and log a% 0, then u as a function of 0 satisfies the dif-

ferential equation

C ), — a1
,”_11).'.’2._1.' (2_1’_
n n n n

u— D] 1) Mu=0.

ﬁrg the complete integral of the above differential equation
wi

Let y" =2z, then the given equation may be expressed in
the form '

»=1

zg=b+az*,

in which 5=—1. Hence, by Lagrange’s theorem,

S
u=2"=b"+ab %b
1 d((,=yd,?
. +i37i—b{“b ‘-Eb }+&c.,
the general term being

@) {55
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which on effecting the differentiations and adopting the fac-
torial notation becomes

m [m+(n—l)r'__1]'“l e
n — r
n[r]' .ay

and this expression will be found to represent the first term
as well as the others of Lagrange's expansion provided that
we interpret the form

0 -1 1
[#]° by 1, and [p]™ by T+p’

Further, the above general development includes the =
particular developments of w or y* arising from the giving

to b its n garticular algebraic values. In this way it repre-
sents the m™ power of each of the n roots y,, ¥;,..... ¥, in
succession.

Now representing the above general term by ».a", we shall

"have
m[m+(n—1)r _ l'l"‘b";;'
n

e n T '
— r~n-1l m—r
ml-m+(1:l l)r_n bn A
R n ]~

Therefore, after reduction and replacing b by —1,

u,_f-"”’(+"”—"—1]]“(£-¥-l)

Up_n [7'

It follows therefore that the complete series of which the
general term is u.a” will if represented by u satisfy the diffe~
rential equation
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25! pez-a](B-2-1)
" O @ou=0...(I).

If we integrate the equation in a series (Chap. XvI1. Art. 9),
the initial terms of the value of » will be

C,+ Ca+ Ca.....+ C,_a"",

the succeeding terms being formed from these by the law
(9). Hence, if the arbitrary constants C,C,..... C,_, be so
determined as to make the above initial terms agree with
the first n terms of the Lagrangean expansion in any of its
particular forms, the sucoeedin%] terms will also agree, and
the Lagrangean expansion will thus become a particular inte-
gral of the equation (I). The aggregate of such particular
Integrals, each affected by an arbitrary constant, will therefore
also be an integral of the differential equation, and will, in
fact, constitute 1ts general integral, subject to exception onl

in the case in which for a particular value of m the integrag

Y™ Yaty eene. Ya cease to be independent.

For instance, if m =—1, and we reduce the equation to

the form
Cy_l)“_ y_l +1=0,

it s seen that except when » =2, we have
3oy e+ 7 =0,
Here then the solution ‘
u=Cy "+ Oy . + C Y eennnnnnn... (10)

ceases to be general for it becomes

U= (01 - Ca) yn—l + (0: - C-) ys_l_'" + (0-1 - n) .1/_11».1’
and virtually involves but n — 1 arbitrary constants, -

If, however, we give to the integral the form

E A T oF

u=Cy+Cy" ...+ C ", +C, | ,

B.D.E, II. 13
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the last term of which becomes a vanishing fraction when
m =—1, we find for the general value of « in this case

u=Cy '+ Cy ..+ Co ¥y
+ C, (3, logy, + 3,7 log gy eevee + 37 log 3),

and in this way we may proceed in failing cases generally.

Lastly, it may be observed that in certain cases the differen-
tial equation (I) admits of reduction to an order lower by
unity than its own. Andin 1Particular this happens in the
failing cases above noticed. Thus, if in (I) we make m =—1
the equation will be expressible in the form

DD-1)... D=—n+1)u

- n-1
_ll:“_lp_l _1] (D—=n+1)eu=0,

n n n

whence, operating on both mémbers with (D —n +1), we
have :
» — "1
[DT"w — ;t [u D- % - lJ ey = Cet™?,

n

The general integral of this equation will be expressed by
(10) provided that a proper relation be established %etween C
and the constants C,, C,, ..... C,. If we choose to determine
C s0 a8 to give to the integral the particular form 37, we shall
find on substituting for u its Lagrangean development making

m=—1, b=—1, and calculating the coefficient of a™' or
€™ in the first member of the differential,
O= [n—3]"*
n .

Hence, if » be greater than 2, we have C=0. It follows
therefore that if n be greater than 2, the equation

[D]*'u—i[”“lp-%-l]”wu=o ...... (D),

. n
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in which ¢ =a has for its general integral
u=Cy '+ Gy, ...+ Oy 'n sy
Yys Yas o+ee Yny being any n — 1 roots of the equation
Y'—ay T +1=0. -

It may be useful to notice the forms which the above
results assume when @ is changed into — @, and therefore D
into — D; see Art. 3.

It will be found that (I) becomes
[D-1]

- 2

of which the integral is therefore

Mu=0...... (I11),

Yis Ygy oevee ¥, being the roots of the equation

and log a being denoted by 8;

while as the equivalent of (II) we have
o1
u—n n£11) 2] T €U =0 (IV),
| — D+= I '
n n
of which, supposing n greater than 2, the integral is
u=Cy '+ Cy ...+ Coiy™\ s

Yis Yyr eevee Y., being any n —1 roots of the same algebraic
equation, .

13—2
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Mr Harley’s results may readily be deduced from the
above. Thus it will be found that the equation (11) re-
duces to ' -

f—nt+(m—1)z=0

if we make
n-1 «n-t
- g n—1)" ="
yr=m-1) "z "t a=—(+-.

Hence, making &= ¢ and representing die' by D', we have
for the transformation of (IV) '

it
% -1
&= ‘(n;”l)__ e” ”

n ’
.D-'-'-’—‘_—I'D,

4
u=(n—1)"ew t

¢ L S . ’
Substituting and multiplying the result by €=, we find

n—1"" " n—1

|' n ., 2n- l'l*’
-1 )
(%) i

which is Mr Harley’s first equation.

If in (I) and (III) we make 1 — %: a, whence m = n— na;

: I S -1

and at the same time change g into ab *, and y into yb *, we
shall obtain_the following somewhat more general statement
of their united import. .
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The differential eguaéions
l[n 1D ~|H(Q+a—2)
u—3 2 SMu=0,
b o] -
u—> D1y My=0, '

I-f—;z_—lD+a—1'JH(£—a+l)

are both satzsﬁed by the general integral
u=Ogm=r+ Oga—e .. + Cy»™,

when Yy, Yy, «... Y, are the roots of the algebraic equation

y"—ay"“:l-b:O, _ i
promied that for the first equation a =€, and for the second
a=¢e", .
. If n=2, the above equations assume the forms

D D

1 ('2‘ '“) (E+°‘-2)

- 20, — (.
-y ~D-7) €y =0,

_bM‘D—_.—me”u=0.
7~ (@17

6. [The two pnnclpal gapers by Mr Harley on the dif-
ferential equations exhibited on page 190 are the following :

' (1) On the Theory of the Transcendental Solution of
Algebraic Equations, Quarterly Journal of Mathematics,
Vol V. pages 337...360.

(2) On a certain class of Linear, Differential Equations.
Manchester Memoirs. Third Series. "Vol. 11 pages 232...245.
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In a letter bearing date January 13, 1864, Professor Boole
ointed out to Mr Harley that his second equation might also
e deduced from the general theorem discussed in Art. 5.

Employing the above notation the deduction may be pre-
sented in the following form. :

The equation (11) will reduce to
fr—nt+(n-1)x= o," .
if we make

! 1 11
y=m-1)"z " =’—z(n—1)"x‘;

and for the transformation of (III) we have

1 1
= ;;(n—- l)"G“, .D=nD',

» -m
u=(n—1)""¢ 7.

These substitutions being effected we arrive, after. some
slight reductions, at the following equation,

2 [(n—1) D = m]* D'’ — (n—1) [nD' —m —1]°"u’ =0,
which, making m=1 and %' =¢, gives
n*[(n—1) D' —1]"* D't — (n—1) [aD' — 2]""t =0,

an equation which admits of reduction. In fact, operating on
both members with (I —1)7, and determiting the constant,
as 12 t(lie former case, by the aid of the Lagrangean expansion,
we fin .

2 [(n=1)D]*"t— (D - n—1) [nD' — 2]t = [n — 1]"¢*,
which is Mr Harley’s second equation.
The references and deduction here given were to have

been ‘added to the memoir which is cited in page 189, ac-
cording to Professor Boole’s desire; but by some accident -
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they were not erted and the omission was not discovered
until after his death

Mr Har]ey has lately succeeded in obtaining the fol-
lowing extension of Professor Boole’s theorem.

The differential equation
.2
a w£ u
n—r d m “*Ir d m e
is satisfied by the m' power of any root of the equation

Y —zy" " t+a=0,

u being considered as a function of .

From this he deduces the following; the differential equa-
tion

w[n—r d m]"7[ 4T
" TdmTr x|
—(e—1) [ —d——?—l]”w'u=0,

is satisfied by the m™ power of any root of the equation

y—ny""+(r—1)z=0.

For the materials of this Article I am indebted to Mr
Harley.]
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CHAPTER XXXI.

THE JACOBIAN THEORY OF THE LAST MULTIPLIER.

1. A sysTEM of n differential equations of the first order
and degree containing = +1 variables admits of n integrals
of the form

U, = Cpy Ug=Cyy eee Uy =Cp,y

%, %,, ... 4, being independent functions of the original vari-
ables, When n—1 of these integrals have been found they
enable us to eliminate » — 1 variables, with their differentials,
from the given system of equations, and so to obtain a single
final differential equation of the first order between the two
remaining variables. The final equation admits of being
made integrable by a factor, and its solution so found would
constitute the »* and last integral of the system. We pro-

ose in this Chapter to develope the theory of the above
ntegrating factor as established by Jacobi. %he term ¢ prin-
ciple of the last multiplier,’ which is more usually employed,
seems objectionable; for the essence of Jacobi's discovery
consisted not in demonstrating the existence or the nature of
the last integrating factor, but in the peculiar form of the
method which he gave for its determination, and in the rela-
tions which are implied in that form. The discovery may be
briefly said to consist in this; viz. that instead of forming by
means of the n—1 known integrals the final differential
equation between two variables and applying methods analo-
gous to those of Chap. v., to determine Iits integrating factor,
we construct antecedently to all integration a linear partidl dif-
ferential equation of the first order, any one integral of which
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will enable us to assign an integrating factor of the final differ-
ential equation, whatever the order of the previous integrations
may have been. Again, this partial differential equation de-
pending for its construction only upon the form of the system
given, we can often by examining 1t affirm beforehand that if
all the integrals but one of the system be in any way found,
the final integral will be deducible by quadratures. This
happens in the case of the most important of all systems of
differential equations—that of Dynamics,

Further, an ordinary differential equation of the n'® order
being reducible to a system of » differential equations of the
first order, Jacobi's theory may here also enable us to pre-
dicate the possibility of the last integration when the previous
integrations have been effected. -

Beginning with a single differential equation of the first
order reduced to the form

dr _dy

X~y

in which X and Y are functions of the two variables  and 7,
we know by Chap. v. that the integrating factor u will be
given by the solution of the partial differential equation

d d
_(% + _(f:l_;) = Ouerereerererrennns(1),

the form of which should be carefully noticed.

Consider next a system of two differential equations of the
first order expressed in the general form

do_dy_ds -

X,Y,end Z being functions of the three variables z, y, z, and
suppose one integral, represented by ,

(@Y, 2)=Cuerrernrrnnnnnnnnnen. (3),

to be known. The function ¢ (, y, 2), or, as we shall expr,ess,'
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it for brevity, ¢, will obviously satisfy the partial differential
equation

d$_ ydd  zdb _ |
Xdiv-l-Yd—y-l-ZE—O"" ........... (4),

of which indeed the given equations form the Lagrangean
auxiliary system; see Chap. x1v.

If from the given integral we determine 2 as a function of
@, ﬁ'( and ¢, and substitute its value in the first of the given
differential equations, viz.

a_dy
xX~Y

the latter will be converted into a differential equation be-
tween « and y. But we may leave to the equation its prior
form, provided that we regard X and Y as functions of the
variables « and ¥, both explicitly as they appear therein, and
implicitly as they are involved in 2. And tﬁis being so, the
equation (1) will become

dpX) dpX)d: d(pY) dpY)ds_

s T &t T ="
dz - ds . .. L |
The values of Tz and 7 this equation must be found

" from the known integral (3); they are
& _dp dp  di__db_dp

% d et dy & oy 0O

This then is the partial differential equation for determin-
ing wu. But the construction of this equation supposes g to
be known. We propose to shew that u can be determined by
a process in which the only partial differential equation to be
so{)ved can be constructed without the knowledge of ¢.
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Since by actual differentiation

L(4B)-E(D-2 222

it fol]ows writing uX for 4, that

09408 L) -L(ex)

Similarly

TR S ;’2( rE)-E(re)

Lastly, we have

Now adding the last three equations together we see that
the first member of the result wanishes by (5): we have thus

L(xB)+ & (rB)+ 5 (2 D)

(D) -E () -2 (2 D)

The second line of the first member is equal to

Ll (xB v, ),

and therefore vanishes by (4). There remains then

i (X + 3 (47 )+ Z (b2 D)=
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Hence if we put

we have

d(MX) d(MY) d(MZ)_
_d.c_+__¢i.1} + = =0iierernnnn (6).

If then by the solution of this equation a value of M dis-

tinct from 0 be found, the function % will be an integrating
' dz

Jactor of that final differential equation which remains when z

has been eliminated from the system (2) by means of any
known integral ¢ = c. :

It will be observed that the equation for M is analogous in
form to the equation for x in the previous system. And this
suggests the form of the general theorem.

" Thus proceeding to the case of a system of three equations

we seé that if
V(2 y, 2, t)=c

be a known integral, 4 therefore satisfying the equation

dyr dyr dyr LA
X%*'Yd_y".ziz'*sz“" ........ (R
then the system
. do_dy ds-
XY Z

will virtually involve only the yariables «, y, 2, since ¢




ART. 1] OF THE LAST MULTIPLIER. 205

-through the known integral becomes a function of z, y,2. The
equation (6) now becomes

d(MX)  d(MX) &t d(MY)  d(UY) dt
& T &t T4 4

LdMZ)  d(MZ) de

=0,

dz dt dz
or putting '
dt__dy dy
d$ = do —d—t yeee

d(MX)dy d(MX)dy d(MY)d\[r d(MY) dy
dv  dt i dw T dy dt dt  dy

LAY dy_dOry) dy_ o
dz dt dt dz

and this is equivalent to

a(ux%) d(MY%%') d(Mz“’\") a(urlh)
&= T T & T &

—%{M(X% + Y%‘—;+Z% + T%‘f)}=o,

" and therefore becomes on rejecting the term in the second
line by (7), and putting ,

dy_
U=y,

d(N. d(N
e T I WL o TS
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If from this equation a value of NV distinct from 0 be ob-

tained, then M =%, and therefore
dt
___N
b= 3
dt dz °

This is the final multiplier, i. e. the integrating factor of
the final differential equation between « and y which remains
when z and ¢ have been eliminated from the given system by
means of the two known integrals. In calculating x from
the above formula we must proceed as follows. The value of

% must be found from any given integral y»=c; but that of

Z—g—’- must be found from another integral from which by means
of the former one ¢ has been eliminated. Thus the general
forms of the integrals will be

Vv (@, 9,2 t)=c,
o (z, 9, 2, c)=c.

Lastly, the values of %—f ) i‘: found as above, and that of

N given by any solution (distinct from 0) of the partial dif-
ferential equation (8) having been substituted in the expres-
sion for p, we must eliminate z and ¢ from that expression by
means of the two known integrals. The resulting function
of , y, c and ¢ will be the integrating factor sought.

. The reasoning above emﬁ:loyed is in its nature quite inde-
pendent of the number of the equations of the original sys-
tem. The general theorem to which it leads may be thus
stated.

THEOREM. The system of n differential equations

PE AN A 4
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being given, if a system of #» — 1 integrals

¢1=°v ¢s= Cgy eeee ¢n—1= Cnys

be so reduced by elimination that the variable g, shall not
appear in ¢,, the variables y,, y, shall not appear in ¢,, and
so on, then the integrating factor u of that final differential
equation between @ and y, will be given by the formula

B M
B, A
dy, dy, " dy.,

in which M represents any integral distinct from 0 of the par-
tial differential equation

d(MX) , d(MY) AT

dx dy, 7 dy,

" In applying this theorem the expression for x4 must be
freed from all the variables except « and y, by means of the
given integrals.

This is Jacobi’s theorem. On account of its great importance
I propose to give another demonstration of it founded upon
the Calculus of Variations.

2. Second demonstration founded upon the Calculus of
Variations. -

It will be most convenient to present the proposed system
of differential equations under the symmetrical form :

dr, _dz, _ %
Xl — X2 - esse ™ Xn 9
the independent variables being Layeneenes z, of which

Z 2
X,, X,, .... X, are any functions. We have thus n — 1 diffe-
rential equations, and we are to seek the integrating factor of
the differential equation which remains when by means of
n— 2 known integrals n — 2 of the variables with their diffe-
rentials have been eliminated.
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Suppose P=c to be any integral of the system, then P
satisties, and it suffices that it satisfies, the partial differential
equation

dP dP dP

‘X‘@:-FX’(T.Q:,""-FX"E,:O ............. (a). .

Now if in place of @, @, ...z, we introduce a new sys-
tem of independent variables u,, uy, .... u, which are functions
of the former, then we shall have

dP . dP ap
X, g+ Xt g
dP . dP P
=Uld~"141+ U’E’o'oo+md&';,

U, U, .... U, being fanctions of u,, u,,....%,. And by the
theory of the transformation of multiple integrals,

j"(.xl‘E+X,JP A XD o, .o,
1 wn

dw—"a
"1 dP dP dP)
=f y(U;gu—I'l' U’fi:, eee F U"d_u. du, du, ....du,,

du, du,

| "

where H=| cceerreereennen.
d,

Zz, Zz,

The foregoing equation we may express in the form
*_ dP U, dP '
s | X5y do, do, .. dz,=3 [ o8 o it

- Hence, representing by 8 an operation of differentiation
which affects only the form of P as a function of z,, 2y, ... o,
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or of u, u,....u,, and not the independent variables them-
selves, we have

Efx@i)dw da:, EfU‘dSPd dus...du,,

and therefore integrating by parts and equating the portions
on each side which remain under the sign of n-fofd inte-

gratlon,

-

8 dX‘Sdeldx,....da:,‘
_zf ——( >8Pdudu  du,.

‘Whence again transforming the integral in the first member

2:]‘dX‘ SPdu du, . du,

f U)sp du, duy ... du,,

and this being true quite irrespectively of the form of P,

we have d
H %—2 du4 (H)

In this equation Jacobi’s theorem is virtually contained.
For let the given equation be multiplied by any factor. Then
changing in the above X; into M&, and U into MU, we

have

Ly d(MX) B Y2 (MU,) .

H

(

Hence, if M be determined to satisfy the equation
d (MX)

2 T =0

?

B.D.E. IL 14
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we shall have

This is wholly independent of the relations connecting
U,y Uyyeeoth, With @, @,,....2,. Now choose the n —2 variables
Uyy Uy +vos Upy 80 that u,=c, u,=c¢,, .... %, , =c,, shall be
integrals of "the given partial difterential equation (2). Then
that equation transformed becomes

U2 g

n-1 du“_l Eu—“ =Y
of which the auxiliary ordinary equation is
U.du, ,— U, du,=0,

At the same time the equation (b) becomes

() ()

n—1

Hence % is the integrating factor of the preceding diffe-
rential equation between u, , and u,.

Jacobi’s theorem in its most general form is thus seen to
be the following

TrEOREM, If the system of differential equations

de, _de,  _dz,
X,"X 7%

2 "

be transformed by the introduction of a new system of vari-
ables u,, %, ....u,, 80 chosen that

shall be integrals of the given system, then the final differen-
tial equation between v, , and «, shall have for its integrating
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factor %, in which M is any fl}nption satisfying the partial
differential equation

d(MX) d(MX) | d(MX) _
dw + de’ o-oo+'7”——0,

1

and H stands for the determinant

du, 9
dz, d,

du, du,

The form of Jacobi’s theorem obtained by the previous
demonstration may be deduced from the above by choosing
for u,_,,u, two of the original variables, for example z, , ,,
and transforming the integrals u,, u,,....u,, so that v, shall
contain only , ... z,, %, shall contain only ,...,, and so on.

Lzxamples,

3. Jacobi has established by means of the above theorem
the very remarkable theorem that in any ordinary dynamical
problem the forces depending not upon the time but upon the
material constitution of the system, if all the integrals but
two of the dynamical equations are found, the two remaining
integrals can be found by quadratures. '

1st. In a dynamical system of free points the forces act-
ing upon which depend only upon the position of the {mints,
we have if we represent the entire system of rectangular co-
ordinates taken in any order by «, ¥, 2,... and the correspond-
ing resolved forces divided each by the corresponding mass
by X, Y, Z,... the system of equations

dz d’y

717’=X; ‘d't—,=Y,no

14—2
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or putting
de_ , dy_.
@a=% @~y
de _d; _dx _dy
d‘=5,——‘—, ....—-—zx—— Y

Now as' X, Y... do not contain ¢ we may consider first the
system

and it is evident that if we can find all the integrals of this
system, ¢ will be given by the equation

t=fi?+c,
xT

« having been first converted by means of the supposed in-
tegrals into a function of .

To determine the last multiplier of the system last written
we have first the equation

d (M) | d(My) d(MX) dMY) _
d:E + dy R dx, + dy’ ""-0’

which since X, Y... do not contain &, y'... is satisfied by
M=a constant. Giving to the constant the particular value 1,
we see that if ‘

U, =Cpy U2 Cyyenne Up g = Cpy

are n —2 integrals of the system, and if by means of these
- we eliminate n — 2 of the variables and construct the differen-
tial equation between the two remaining variables, the inte-

grating factor of that equation will be 1 ,in which H is the
functional determinant of w,, u,,.... 4,
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‘2ndly. Suppose the system subject to a material connex-
ion which establishes an equation of condition among some
or all of the co-ordinates. q[f we represent the co-ordinates
taken in any order and multiplied each by the square root of
the corresponding mass by @, ,... the corresponding resolved
forces by X, Y,... and the equation of condition expressed by
means of the above modified co-ordinates by ¢ =0, the diffe-
rential equations will be

dz _ dp dy_ d¢
a—té——X'l"X“", dtz_Y+X@’...’

the transformation above employed reducing all the equations
to the same type. [See the next Chapter.]

Making
de _ , dy_ ,
= @Y

the system becomes

_dz_dy da’ dy'

y see ™ ?2= i?-o--’
X’”‘dz Y'H‘dy -

and the Jacobian equation for M becomes

a0ty dy) % {M (X +2 Z—:)}

dm +‘Ty— nuo+ dw’
d{M(Yn Z_"’)}
+ J2 .. =0
dy' ’

Now ¢ does not contain «/, y'.... Let us inquire whether
it is possible to determine M also as a function of @, y ....
without &', 7'.... 80 a8 to satisfy the above differential equa-
tion.
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The equation would become
dM ,dM d\ dp |, d\ do _
da: +y d +.. +M( 'd—a:+¢7_1/—’2§+"“)—0’

or if we write
'd » d -
z%+y @....—8,

dn d$  d\ di _
SM+ M( Tty ot ) =0,
and from this we must eliminate A.

Now since ¢ =0, we have by differentiating and putting

= =a,...
dt ?

dé

dé
dm-l-y + ..—0

. &y
and again differentiating

d’¢+g ol‘ ....+2a>'y'd—g%+---
+%% +¢$ ‘z+ .=0,
or since
& _x®,..
ﬁ*’-’/ dg;’ ,,+2x'3/'£%§+....
+X%By Y'Z

o
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and differentiating with respect to =,

215

2 (m’ Z;d: +y'af—‘2y+ ) +% {(Z—:),+ (%),+ } =0,

or if we make

(%)'+ (‘%)’+....= Q,

dé  dr
2+ @=0.

Similarly
dp dn ,
28 @ + gj‘i Q - 07
Therefore
dp  dp dp  do
2(75 8 %+2d—y8@+n..

A\ dp | d\ do _
+(%7d—w+8?@+.....)0—0,
or
dds . dd ~
39*(47% d—y@+....)Q_0,
dn dp | d\ dd

and now eliminating e~ +3?@+

we obtain QM-M3Q=0,
which is satisfied by M= @,

4. [Among Professor Boole’s manuscripts I found five

Eages in German, forming part of a memoir, which was pro-
ably intended for Crelle’s Mathematical Journal.

he

memoir was to have discussed two applications of the Calcu-

.
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lJus of Variations; one to the Jacobian Theory of the Last
Multiplier, and the other to the Solution of Pfaff’s equation

X, do, + X, do,+ ...... + X gy =0,

But there is only a single paragraph relating to the second
application. '

The manuscript contains the same demonstration of the
Jacobian Theory of the Last Multiplier as in Art. 2 of the
present Chapter; after this demonstration some remarks occur
of which the substance will now be given.]

It is worthy of notice, that Jacobi in the 36th volume of
Crelle’s Journal, deduced by the aid of the Calculus of Varia-
tions the result on which the preceding demonstration of the
Theory of the Last Multiplier depends. In fact, he shewed
that it V" denotes any function of

By By oo Ty By e B
1? 3? Ry ’ dxl ’ dz“ ?

and V be transformed by the introduction of a new system of

independent variables u,, u,, ... %,, then the following rela-

tion holds,

A[V_4 4V d av
E;—dzxd_z—." EF&
d, d,

_d@AV) dd@ay)  _ ddAn
TSTd & e g
du, du,

td du,
da, d,
du,’ Zu,
where A= creeeierirernnies .
dz, dzx,
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Jacobi applies this result to the transformation of the ex-
pression
av, av 4V
tart e

But neither Jacobi himself, nor any other person, so far as I
know, has drawn attention to the application of the result
which I have given here.

[The substance of the single paragraph relating to the
second application of the Calculus of Variations will now be
given.] ‘

Clebsch has earned the thanks of all who are interested in
the higher parts of the Theory of Differential Equations, since
he has performed the same service for Pfaff’s problem as
Jacobi did for the Theory of Partial Differential Equations of
the first order, and thereby for the equations of Dynamics.
But while I recognise the great importance of the results, I
consider it desirable to give a simpler deduction of the system
of partial differential equations therein involved, and on which
the other results depend. :
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CHAPTER XXXII
THE DIFFERENTIAL EQUATIONS OF DYNAMICS.

[IT will be seen that this is only a fragment of the Chapter
which was to have appeared under this title.]

I do not propose in this Chapter to discuss the origin and
interpretation of the differential equations of motion or to enter
into those details of their application which are found in all or-
dinary treatises on Dynamics. But they constitute a system
analytically so remarkable from the forms in which it is
capable of being expressed, and from the general methods of
integration which emerge out of those forms, that they are
well deserving of a special attention.

Referred to rectangular co-ordinates the differential equa-
tions for the motion of a system of points free or connected
are

'z _ dp  dy
mF—X+X—l+#——Z...
dy _ do dy
‘MW— Y+X@-+[L—dy “ee

. dz dp dy
S AR AL PR
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Here m is the mass at the point (z, y, 2), m' that at (2, %/, 2'),
X, Y, Z the resolved forces at (z, y, z) tending severally to
increase those co-ordinates, and so on. Lastly

$=0, ¥=0,...

are the equations of condition each of which may involve all
the co-ordinates, and A, ... are indeterminate multipliers.

The above is usually termed the first Lagrangean form of the
differential equations. In applying it we must either elimi-
nate A, w... from the given equations, and then by the equa-
tions of condition just so many of the co-ordinates with their
differentials, or we must retain A, y,... as variables so conditioned

dz dy . o
that the values of ZE garin the system shall satisfy iden-
dz dy

tically the differential equations involving TE @ de-
rived from ¢ =0, 4=0,... viz. the equations

To_o TV _

e

The first Lagrangean system may by a slight transforma-
tion be reduced to'a form in which allythe equations are of
one type, viz. of the type which they would have if all the
masses were equal to unity.

For taking the first equation of the system and dividing
by m! we may express the result in the form

d* (mbz) X dp  dy
de* "m*“d(m*x) T b

from which we see that if z, y ... had been taken to represent
the entire system of co-ordinates taken in any order and mul-
t)i})lied each by the square root of the corresponding mass, and
X, Y ... the corresponding resolved forces taken in the same
order and divided each by the square root of the correspond-
ing mass, the system of equations would have been
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dz_ db .
W—X'l“x%-l'[t—&i...
d'y

_ dp d¥
-‘—i—t,—- Y+Xd7+[l'7y'...

------------------------------

all being of one type. In general investigations this form
is to be preferred.

From the first Lagrangean form another known as the
second Lagrangean, and from this again a third known as
the Hamiltonian are derived. The second Lagrangean form
is properly speaking an expression for the effect of a trans-
formation of co-ordinates in the most general sense upon the
original Kstem, i.e. of a transformation which in place of
x, ¥,... the entire system of given co-ordinates substitutes
a new system of variables £, 1, ... the expressions of which as
functions of @, y, ... are known. It is not necessary that this
new system of variables should be co-ordinates in the proper
sense of that term, determining three by three the positions
of the several masses; it suffices that they should in their en-
tirety determine and be determined by the co-ordinates given.

The second Lagrangean form may be established as
follows : '

Differentiating the equations ¢ =0, ¥ =0,... with respect to
any one of the new variables £ we have

ddo dbdy _
dedE Ty dg ="
dypde  didy —0-

?

e JE— + *@ aE =
whence if we multiply the equations of the given system by

Z_g, gy, and add, we have
‘ ded’z  dyd'y dz  y dy
d—eﬁ+dfﬁon.=ng+ydfe"‘
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CHAPTER XXXIII.

ON THE PROJECTION OF A SURFACE ON A PLANE.

[THE following memoir was found among Professor Boole’s
manuscripts; a Title and Introductory Remarks were to have
been prefixed, but with this exception the memoir appears to
be finished for publication. It 18 sufficiently connected with
the subject of ]giﬁ'erential Equations to find a place in the
present volume.

The memoir by Sir John Herschel to which allusion is
made is entitled, On @ new Projection of the Sphere; this was
read before the Royal Geographical Society of London on
the 11th of April, 1859, and was printed as part of the Journal
of the Society, Vol. xxX. 1860, pages 100...106. A chart of
the World on Sir John Herschel’s projection has been pub-
lished by A. and C. Black of Edinburgh.

The history of the subject will be found in Chapter xx111.
of the Coup d’ceil kz'stomgue sur la Projection des Cartes de
Géographie... Par M. D’Avezac, Paris, 1863.

For the materials of this introductory notice T am indebted
to Sir John Herschel.]

1. Let z, y, z be the rectangular co-ordinates of any point
on the given surface; ', ' the co-ordinates of the correspond-
ing point on the plane of projection. Let the equation of the
given surface be

‘ F(x,y,2)=0;
or, for simplicity, _
F=0.
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The condition of projection upon which Sir John Herschel’s
investigations are founded, and which we shall adopt here, is
that of the similarity of corresponding inﬁnitesimaq areas on
the surface and on the plane. The object of the problem then
in general is the discovery of the mode in which «, 3' depend
~ upon @, , and z in accordance with the above condition; its

object in any particular case is the determination of ', 3’ as
functions of z, ¥, 2.

" Regarding then &', 3’ as ultimately functions of =, y, z we
ave

& A, d
dx =Tz d’b+-‘—iz—/'dy+71; dz,

dy dy' dy
o dx + 2 dy + 7

in which dz, dy, dz are not independent, but are connected
by the condition ‘

dF dF dF
d—x'dm-l-ay dy+72—dz=0.

dy =

Now for brevity write

' _ . da_
==Y ay=" &%
dy _ , dy dy

-d'—x=a, zg=b', —‘—i;=c,

dz =A’ @ =B, az C;
then
Ao’ = adx +bdy + cdz ...ocvvnnnneeeinneennannns (1),
dy =a'dze+0dy +c'dz ceveereenreneenrennnnnnn. @),

0=Adx+Bdy+ Cdz ....cccvvvvrvvrrunn.... (3).
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Now the condition of the similarity of infinitesimal cor-

.responding areas may be resolved into the two following

conditions, viz.:

1st. The equality of their corresponding angles.

2ndly, The proportionality of their corresponding sides.
And these conditions we shall introduce separately.

1st. Assuming any point 2/, ' on the plane of projection,

let o' alone vary, and the infinitesimal line generated is da’,
while (since dy’=0) (2) and (3) become

addz+bdy+cdz=0,
Adzx + Bdy+ Cdz =0,

whence, if we write
L=Bd -0, M=Ca—Ac, N=AbV—-Bd,

we have D A IR 4),

so that the direction cosines of the infinitesimal line on the
surface F' corresponding to the line dz’ on the plane (z', y)
will be '

L M N
(F+ M+ N (LP+ M+ N)Y (L4 M N
In like manner, if 3’ alone vary, we shall find for the

direction cosines of the infinitesimal line on the surface #
which corresponds to dy’ on the plane

L M N
(L"+M"+N")4’ (L"+.M"+.Nu)%, (Ln_'_MVs_i_Nm)&
where L'=Bc— Cb, M'= Ca— Ac, N' = Ab — Ba.

By the first of the conditions of similarity the angle be-
tween these lines on the surface must be a right angle since
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dx’ and dy are at right angles. Hence we have, from
(5) and (6), .

LL+ MM + NN'=0 .ccevverrrerosonens errenneeas (.

2ndly. The ratio of the length of the element dz’ to the
corresponding element on the surface is

'
Vi T dy T d
or, by (1),
adw + bdy + cdz
ity 1
and therefore by-(4)
aL +bM + cN
NL + M+ N*’
uating which to the corresponding expression for the ratio

" of the length of dy to that of its projection on the surface,
we have

aL+bM+cN oL +¥M +cN
N/L’+AP+N2 ‘\/-L”+M"‘+_N'* ceseevoee

.. (8).

Now if we substitute for L, M, N, L', M', N' their values,
we shall find

aL+bM+cN=A@Fc—bc)+B(ca—ca)+ C(a—ab),
dL+ VM4 N' =A4(bc'-b'c) + B(ca'~c'a) + C (ab'—a'),
and the second members of these equations differ only in sign.

Thus (8) may be expressed in the form
{A (b'e—b¢) + B(da— ca) + C (ab'— a'b)}

1 1
" {(L"" W+ NRET (L M“+N”)*} =0.-(9).
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But the first factor of the first member of this equation
being the determinant of the system ,

adx + bdy + cdz =0,
ddz +Vdy+cdz=0,
Adz + Bdy + Cdz =0,

expresses when equated to zero the condition that if in the
system (1), (2), (3) dy' vanishes dz' shall also vanish; and

' and dy being independent, this condition cannot be satis-
fied, so that (9) reduces to

1 1
- =0,
(Z+ M+ NS (L*+ M*+ N7} :

whence
L'+ M*+ N*- L'~ M~ N'=0.........(10),

and this, with (7), will fully express the conditions of simi-

larity.

2. If we multiply (7) by 2 ¥—1, and add and subtract
the result from (10), we obtain the equivalent system

(L’+L«/——1)’+(M'+M~/'—_1)’+(N"+N«/—_1)’=_0} u
(L' = NI + (M — MN=T) + (N— NVTI) =0 -8

Now L’j;L'\/-_:l——g———-———
dF dy dF dy\ —

_dFd( +yN=T) _dF d( +yV7Y)
T dy dz dz dy o
B.D.E. II 15
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Writing then
&y N—l=u a—yV-l=uo,

we have

' _dF dv dFdv
M-MV-1= g & & &
o~ _dF du dF du-
, ov—_ dF dv dF dv
N"NV_I—Z%@_@ T
Substituting which in the system (11) there result

(dF du dF du)’ dF du dF du)= )

dydz " dz dy) " \dz dz” dw de.
2
"‘%'%"%%)'—‘0? 12)
(QI_"'@_J_F@)* dF dv d_ﬁ_'dv)’ B
dy dz” dz dy (Eza‘dwz
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to which we may give the somewhat more convenient form

(@) + @)+ @M + @)+ @)
| SLLR LN L

dF\* (dF\' | ((dv\* | (dv\' K (dv\*

(@ &) +@EH@+ @)+ @)}

' dF dv dF dv dF dv\*
(& 5ty 5T B) =0

These are partial differential equations of the first order,
serving to determine u and v as functions of z, g, z.

But it is not necessary to solve the equations in their
general form. For, #, y, and 2 being connected by the equa-
tion of the surface, the above equations may always be so
reduced as to involve only two independent variables. As
latitude and longitude determine the position of a point on
the earth, 8o two co-ordinates of any given species will deter-
mine the position of a point on the given surface, and these

co-ordinates, when fixed upon, become the independent varia-
bles of the problem,

Let s and ¢ represent such co-ordinates, and let their ex-
pressions in terms of z, y, # give ' '

s=¢,(x, 9, 2), t=¢,(z 9, 2),
which equations combined with that of the given surface will
reciprocally determine «, y, # as functions of s and & Then
1st the differential coefficients of F which in the equations
(I), (II), are functions of , ¥, z may be transformed into func-
tions of s and ¢; 2ndly, we have ’
du_dude du dt
dn~ ds do’ dt dz’
du_dudo du dt
dy dsdy dt dy’
du_du do , du &
dz ds dz ' dt dz’
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ds  dit
dx’ da
are expressible in terms of s and ¢&. The result of these sub-
stitutions will then be to convert (I) into a partial differential
equation in which » is the dependent and s and ¢ the inde-

ndent variables, and this equation being, like (I), of the

t order and second degree in the differential coefficients of
u, will be of the form '

and as ... are known functions of z, ¥, 2, they also

For v we shall have an exactly similar equation with the
same coefficients. :

The -above equation is, by the solution of a quadratic,
resolvable into two equations of the form

du du du _ du
s ME=" & ha="

To these correspond the respective auxiliary equations

dt+Nds=0, di+Nds=0........... (13).
If the integtals of these are
S=¢, T=c,

respectively, then we have
u=¢(8), “=‘l’(T)'

Now v being determinable by an equation of the same
form as w, it follows that of the above two values of u one
must be assigned to v, so that the solution of the problem will
be contained in the system

u=¢(S), v=+(T),
or in the system

u=¢(T), v=v(S).
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The particular forms of the arbitrary functions ¢ and ¥
will depend solely upon the nature of the problem under con-
sideration.

One other point remains to be noticed. The first mem-
bers of (12) are essentially positive, being composed of
squares; so are then the first members of (I), (II); and so,
if the intermediate transformations are real, is the first
member of the equation whose coefficients are P, @, R.
Hence the quadratic determining A, A, will have imaginary
roots of the form a+8J—1. Ultimately therefore it will suf-
fice to integrate one equation of the system (13) and then to
deduce the solution of the other by changing +/—1 into
—-V-1

3. Application of the above formule when the given sur-
Jace is an oblate spheroid, such as the earth.

Let the plane of the equator be that of projection, the
centre being the origin. Let the co-ordinates @, y pass
through the meridians of 0 and of 90° respectively, and 2
through the poles. The equation of the surface will be

o+ 2
a,y’-,-z":l ------------------- (14)’

where a i8 the earth’s equatorial, b its polar radius. Let also
the latitude of the point @, y, z be represented by s, the
longitude by ¢. We have '

P24y L

a2

F=

IF_se  dF_3  dF_2%
de a'’ dy o' dz b’

and substituting in (I),
(e m) {(@) + (&) (@) '
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2
or, if we represent 21' by &%,

@ + 3t +h'2) { (Z—:). + (%)‘ + (%)’}

du du ., du\'
_(whq.ydy-+hzd—£) =0.0errens (15).

Now as @, y are rectangular co-ordinates in the plane of
the equator, and « passes through the first meridian, we have

Y —tane.
X

Again, representing in the annexed figure the meridian of'
the point P, or (z, y, 2)
touched by the straight line Q
QR in the same plane, we

have CM=V2+3’, MP=z.
Therefore if ¥a* + y*=r, the

equation of the meridian is o X
r‘ 8

that of the tangent

' 2

Fty=h

v, 2 being current rectangular co-ordinates of the tangent.
Hence

a'z Rz
tan C’QR—-E—W.
But CQR =latitude. Therefore finally
—tan~! 2 —tan Y
. s=tan l‘\/w’+y” t=1tan ‘5 ceeesenes (16),

and we must now transform (15) so as to make s and ¢ the
independent variables. :
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From the above equations combined with (14) we find
__dhcost - ahsint g atans (17)
“Vittws 7 NFitds ANE +tan's
and substituting in (15),
du\?
+(@)}

wto{(Z) + ()
)

du
(cost‘h+smtdy+tan 7 ... {18).

Again,
du duda du dt
&= d= T A
du duds du dt
dy= dady dt dy’
du _du o du d
de ds dz" dt dz'
Now % — — Rex _=sinscoss c‘ost,,/ﬁj
de [+ (24 4 + h') ah
where H=/*+tan's. In like manner
4 ds _ —sins coss sin¢ JH
dy ak ’
ds _ hcos's JH
=,
dt _—sint JH
dz ah ’




232 ON THE PROJECTION [cH. xxXIIL.

Hence
Z_::%(—sins cos 8 cost%—sint%):
%_—.g(— gins cos s sint% +costg;—‘) ,
% =ﬁg(h’ cos’s %) .

Substituting these values in (18), and dividing by the com-

mon factor =7 Ve have on reduction
H

(Z—’t‘) + cos's {14 (B 1) cos"s}’ (%)’: 0,
which is resolvable into
%‘ — J=1coss {1+ (B —1) cos’s} %— =0,

du

du .
/3 +J—1coss {1+ (R*—1) cos’s}E =0,

ial differential equations of which the integrals are in-
cluded in the common formula

“= ¢<fcoes {1+ (}zdf— 1) cos®s} * t"/:—l) ’

ds
cos 8{1+ (A*—1) cos’s}

Now f

_ [ ds coss ds
—[cm+(l—h’).[1+(h’-—l) cos’s

_ [ ds cossds .
= Rs"—(l_h’)fh’-—(h’-l)sih’s
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| =fc%:;—'e’f—1£0§ﬂd—s— (sinqe e’==a‘;,b’)

— é'sin’s’

2°g1+esins
- 8
1—-esins\# .8
=1°g{(1+esins) W’GJ’E)}‘
Hence o , . .
1—e sins\7 1r 8
“=¢[1°g{(mm) m(2+§)}it*/—l]’
or, changing ¢ (¢) into ¢ (¢),
1—esins\v T 8 v
- - - — 3+ =
“‘¢{(1+esins) t“’“(4"’2)"‘M l}’

o 1—esins\7 T 8
= _ — 4 =] ewtVTL,
v 1l"{(1+esm.s) tan(4+2)e* 1}

Let r and 6 be the polar co-ordinates of that point in the
Plane of projection which corresponds to the point whose
atitude and longitude on the surface are s and ¢; and let

1—e sin s\ T 8\
S—(l-l:e sins) tan(Z*E)’

. 1—¢ >
=logtan(7zr+f:,)+e esms

then the complete solution assumes the very simple form
réVT= b (QetV), re-0vT = (Sextv) ... (ITI).

Of particular deductions the most interesting is that which
arises from the supposition that the parallels of latitude are
projected into circles round the pole. This requires that r

B.D.E. II 16
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should be independent of ¢, a condition which is satisfied in
the most general manner by assuming

$(t)= Ct', 1}r(t)=0't',
we then find
redvi= O8%* V3, re=0vA= (' §re®¥V,

whence, on multiplication .and division,
P=00m, avE= T eam,

whence, 4 and B being new arbitréry constants derived from
Cand C'

r=A4A8", O0=4+nt+B.

If we observe that @ and ¢ should vanish together, we have
B=0, and the equation 6= % nt shews that the surface of
the sphere will be projected into a sector of a circle, the arc
of which is to the circumference of the circle as » : 1. Thus,

if n= 71, the sphere is projected upon a quadrant, and so

on.

The other equation gives

. ny
7w 8\)" /1 —esins\?
"A{t"n<z+‘)} (l+esins) :

If s=0 we find =4, whence 4 is the distance of the
equator from the pole in the plane of projection, and if that
distance, which is arbitrary, be assumed as the unit, we have

o 8\|* (1 —e sins\ T
7= tan {(Z + _>} (1 +e 8in s)
for the distance from the pole of that parallel whose latitude
is & We may give to this expression a better form by
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assuming p = g + 8, and introducing an auxiliary quantity ¢
determined by the equation
ecosp=Cco8q.

r=(tan®)" (ot )",

The following table gives the values of » for the sphere and
for the spheroid whose eccentricity is ‘08 (which is about that
of the earth), for each ten degrees of polar distance, for the

We have then

values n=1, and n=i.

: 1
Polar n=1 n=1
ce.
Sphere. Spheroid. Sphere, Spheroid.

10° 0875 *0880 *5439 5447

20° 1763 1774 *6480 6490

30° 2679 2694 ‘71956 *7205

40° 3640 3658 7767 777

50° 4663 4682 ‘8264 8272

60° 5774 5792 8717 ‘8724

70° *7002 *7017 ‘9148 9153

80° 8391 ‘8400 9571 ‘9574

90° 1:0000 10000 10000 10000
100° 11918 11904 1:0448 1°0445
110° 14281 14250 10932 10926
120° 17321 17265 1°1472 1'1463
130° 21445 2:1357 12101 12089
140° 27475 27340 1-2875 1-2859
150° 37321 37114 13899 1-3880
160° 56713 56372 1:5432 1'5409
170° 114301 11'3581 1-8387 1'8358

THE END.
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the present position of the Clergy
of the Church of England; and
an Appendix on the Testimony
of Scripture and the Church as to
the possibility of Pardon in the
Future State. By the Rev. J.
g.,L.6Ia),AVIES, M.A. Fecap. 8vo.
s, 6d.

DAVIES.—THE WORK OF

CHRIST; OR THE WORLD
RECONCILED TO GOD.
With a Preface on the Atone-
ment Controversy. By the Rev.
J. LL. DAVIES, M.A. Fcap.
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KINGSLEY. Second Edition.
Crown 8vo, 6s.

KINGSLEY.—THE HILL-
. YARS AND THE BUR-
TONS: a Story of Two Families.
By HENRY KINGSLEY. 3
vols. crown 8vo. cloth, 1/ 11s. 64.

KINGSLEY.—RAVENSHOE.
By HENRY KINGSLEY. ANew
Edition. Crown 8vo. 6s.

KINGTON.—HISTORY of
FREDERICK the SECOND,
Emperor of the Romans. By

- T. L. KINGTON, M.A. 2vols.
demy 8vo. 32s.

KIRCHHOFF. — RE-
SEARCHES on the SOLAR
SPECTRUM and the SPEC-
TRA of the CHEMICAL ELE-
MENTS. By G. KIRCHHOFF,
of Heidelberg. Translated by
HENRY E. ROSCOE, B.A.
4to. §5. Also the Second Part.
4to. 5s. with 2 Plates.

LANCASTER —ECLOGUES
AND MONO-DRAMAS; or, a
Collection of Verses. By WIL-
LIAM LANCASTER. Extra
fcap. 8vo. 4s. 6d.

LANCASTER. — PRATE-
RITA: Poems. By WILLIAM
LANCASTER. Extra fcap. 8vo.
4. 6d.

LANCASTER. — STUDIES
IN VERSE. By WILLIAM
LANCASTER. Extra fcap. 8vo.
cloth, 4s. 64,

LATHAM. — THE CON-
STRUCTION of WROUGHT-
IRON BRIDGES, embracing the
Practical Application of the Prin-
ciples of Mechanics to Wrought-
Iron Girder Work. By J. H.
LATHAM, Esq. Civil Engineer.
8vo. With numerous detail Plates.
Second Edition. [Preparing.,
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LLECTURES TO LADIES
ON PRACTICAL SUBJECTS.
Third Edition, revised. Crown
8vo. 7s. 6d. !

LEMON. —LEGENDS OF
NUMBER NIP. By MARK
LEMON. With Six Illustra-
tions by CHARLES KEENE. Extra
fcap. 5s.

LESLEY'S GUARDIANS:
A Novel. By CECIL HOME.
3 vols. crown 8vo. 3Is. 6d.

LIGHTFOOT. —ST.
PAUL'S EPISTLE TO THE
GALATIANS. A Revised Text,
with Notes and Dissertations.
By J. D. LIGHTFOOT, D.D.
8vo. cloth, 10s. 64.

LOWELL. — FIRESIDE
TRAVELS. ByJAMES RUS-
SELL LOWELL, Author of
““The Biglow Papers.” Fcap.
8vo. 4s. 6d.

LUDLOW and HUGHES.—
A SKETCH of the HISTORY
of the UNITED STATES from
Independence to Secession. By

. M. LUDLOW, Author of
¢¢ British India, its Races and its
History,” ¢The Policy of the
Crown towards India,” &c.

To which is added, THE
STRUGGLE FOR KANSAS.
ByTHOMAS HUGHES, Author
of ‘‘Tom Brown’s School Days,”
‘“Tom Brown at Oxford,” &c.
Crown 8vo. 8s. 6d.

LUDLOW—BRITISH
INDIA ; its Races, and its His-
tory, down to 1857. By JOHN
MALCOLM LUDLOW, Bar-
rister-at-Law. 2 vols. 9s.

LUDLOW. — POPULAR
EPICS OF THE MIDDLE
AGES, OF THE NORSE-
GERMAN AND CARLOVIN.-
GIAN CYCLES. By JOHN
MALCOLM LUDLOW. 2 vols.
fcap. 8vo. cloth, 14s.

LUSHINGTON—THE

. ITALIAN WAR 1848-9, and
the Last Italian Poet. By the
late HENRY LUSHINGTON.
With a Biographical Preface by
G. S. VENABLES. Crown 8vo.

6s. 6d.
LYTTELTON—-THE
COMUS OF MILTON rendered

into Greek Verse. By LORD
LYTTELTON. Extrafcap. 8vo.
Second Edition. 5.

MACKENZIE—THE
CHRISTIAN CLERGY of the
FIRST TEN CENTURIES,
and their Influence on European
Civilization. By HENRY MAC-
KENZIE, B. A. Scholar of Trinity
Collgge, Cambridge. Crown 8vo.
6s. 6d.

MACLAREN.— SERMONS
PREACHED AT MANCHES.
TER. By ALEXANDER MAC-
LAREN. Second Edition. Fcp.
8vo. 4s. 6d. A second Series in
the Press.

MACLEAR.—A HISTORY
OF CHRISTIAN MISSIONS
DURING THE MIDDLE
AGES. By G. F. MACLEAR,
M.A. Crown 8vo. 10s5. 6d.

MACLEAR. — THE WIT-
NESS OF THE EUCHARIST;
or, The Institution and Early
Celebration of the Lord’s Supper,
considered as an Evidence of the
Historical Truth of the Gospel
Narrative and of the Atonement.
Crown 8vo. 4s. 6d.
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MACLEAR. — A CLASS-
BOOK OF OLD TESTA-
MENT HISTORY. By the
Rev. G. F. MACLEAR, M.A.
With Four Maps. Seond Edi-
tiorn. 18mo. cloth, 4s. 64.

MACLEAR. — A CLASS-
BOOK OF NEW TESTA-
MENT HISTORY, including
the connexion of the Old and
New Testament.

MACMILLAN.—FOOT-
NOTES FROM THE PAGE
OF NATURE. By the Rev.
HUGH MACMILLAN,
F.R.S.E. With numerous Illus-
trations. Fcap. 8vo. 5s.

MACMILLAN'S MAGA-
ZINE. Published Monthly, price
One Shilling. Volumes I.—XII.
are now ready, 7s. 6d. each.

McCOSH.—The METHOD
of the DIVINE GOVERN-
MENT, Physical and Moral.
By JAMES McCOSH, LL.D.
Eighth Edition. 8vo. 10s. 6d.

McCOSH.—THE SUPER-
NATURAL IN RELATION
TO THE NATURAL. By
JAMES McCOSH, LL.D.
Crown 8vo. 7s. 6d.

McCOSH.—THE INTUI-
TIONS OF THE MIND. By
JAMES McCOSH, LL.D. 4
New Edition. 8vo. cloth, 10s. 6d.

McCOSH. — A DEFENCE
OF FUNDAMENTAL
TRUTH, BEING A REVIEW
OF THE PHILOSOPHY OF
MR. STUART MILL. By
JAMES McCOSH, LL.D. Cr.
8vo. [Z9 the press.

McCOY.—CONTRIBU-
TIONS TO BRITISH PALZA-
ONTOLOGY; or, First Descrip-
tions of several hundred Fossil
Radiata, Articulata, Mollusca, and
Pisces, from the Tertiary, Creta-
ceous, Oolitic, and Paleozoic
Strata of Great Britain. With
numerous Woodcuts. By FRED.
McCOY, F.G.S. Professor of
Natural History in the University
of Melbourne. 8vo. 9s.

MANSFIELD. — PARA-
GUAY, BRAZIL, AND THE
PLATE. Witha Map, and nume-
rous Woodcuts. By CHARLES
MANSFIELD, M.A. With a
Sketch of his Life. By the
Rev. CHARLES KINGSLEY.
Crown 8vo. 12s. 64.

MANSFIELD—A
THEORY OF SALTS. A
Treatise on the Constitution of
Bipolar (two membered) Chemi-
cal Compounds. By the late
CHARLES BLANCHFORD
MANSFIELD.
cloth, price 14s.

MARRIED BENEATH -
HIM. By the Author of ¢ Lost
Sir Massingberd.” 3 vols. crown
8vo. cloth, 1/, 11s. 6d.

MARRINER. — SERMONS
PREACHED at LYME REGIS.
By E. T. MARRINER, Curate.
Fcap. 8vo. 4s. 6d.

MARSTON.—A LADY IN
HEROWNRIGHT. By WEST-
LAND MARSTON. Crown 8vo.

6s.

MARTIN.—THE STATES-
MAN’S YEAR BOOK for 1866.
A Statistical, Genealogical, and
Historical Account of the Civilized
World for the Year 1866. By
FREDERICK MARTIN. Cr.
8vo. 105. 64,

Crown 8vo.
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MARTIN. —STORIES OF
BANKS AND BANKERS. By
FREDERICK MARTIN. Fcp.
8vo. cloth, 3s. 6d.

MARTIN.—THE LIFE OF
JOHN CLARE. By FREDE-
RICK MARTIN. Crown 8vo.
cloth, 7s. 64.

MASSON—ESSAYS,
BIOGRAPHICAL and CRITI-
CAL; chiefly on the English
Poets. By DAVID MASSON,
M.A. 8vo. 125. 6d.

MASSON.—BRITISH
NOVELISTS AND THEIR
STYLES; being a Critical Sketch
of the History of British Prose
Fiction. By DAVID MASSON,
M.A. Crown 8vo. 7s. 6d.

MASSON.—LIFE of JOHN
MILTON, narrated in Connexion
with the Political, Ecclesiastical,
and Literary History of his Time.
Vol. 1. with Portraits. 18s.

MASSON—RECENT
BRITISH PHILOSOPHY. A
Review, with Criticisms. By
DAVID MASSON. Crown 8vo.
cloth, 7s. 64.

MAURICE.—WORKS BY
THE REV. FREDERICK
DENISON MAURICE, M.A.

THE CLAIMS OF THE BIBLE
AND OF SCIENCE; a Corre-
spondence on some questions re-
specting the Pentateuch. Crown
8vo. 4s. 6d.

DIALOGUES on FAMILY WOR-
SHIP. Crown 8vo. 6s.

EXPOSITORY DISCOURSES
on the Holy Scriptures :—

THE PATRIARCHS and LAW-
GIVERS of the OLD TESTA-
MENT. Second Edition. Crown
8vo. 6s.

This volume contains Discourses on
the Pentateuch, Joshua, Judges,
and the beginning of the First
Book of Samuel.

THE PROPHETS and KINGS of
the OLD TESTAMENT. Second
Edition. Crown 8vo. 10s. 64,

This volume contains Discourses on
Samuel L and I, Kings I.and IL
Anmos, Joel, Hosea, Isaiah, Micah,
Nahum, Habakkuk, Jeremiah, and
Ezekiel.

THE GOSPEL OF THE KING-
DOM OF GOD. A Series of
Lectures on the Gospel of St.
Luke. Crown 8vo. gs.

THE GOSPEL OF ST. JOHN;
a Series of Discourses. Second
Edition. Crown 8vo. 10s. 64.

THE EPISTLES OF ST. JOHN ;
a Series of Lectures on Christian
Ethics, Crown 8vo. 7s. 6d.

EXPOSITORY SERMONS ON
THE PRAYER-BOOK :—

THE ORDINARY SERVICES.
Second Edition. Fcap. 8vo. 5s. 6d.

THE CHURCH A FAMILY.
Twelve Sermons on the Occa-
sional Services. Fcap. 8vo. 4s. 64.

LECTURES ON THE APO-
CALYPSE, or, Book of the
Revelation of St. John the Divine,
Crown 8vo. 10s. 64.

WHAT IS REVELATION? A
Seriesof Sermons on the Epiphany,
to which are added Letters to a
Theological Student on the Bamp-
ton Lectures of Mr. MANSEL.
Crown 8vo. 10s. 64,
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SEQUEL TO THE INQUIRY,

+ ‘“WHAT IS REVELATION?”
Letters in Reply to Mr. Mansel’s
Examination of ¢¢Strictures on
the Bampton Lectures.” Crown
8vo. 6s.

LECTURES ON ECCLESIAS-
TICAL HISTORY., 8vo. 10s. 6.

THEOLOGICAL ESSAYS.
Second Edition.  Crown 8vo.
10s. 6d. ’

THE DOCTRINE OF SACRI-
FICE DEDUCED FROM THE
SCRIPTURES. Cr. 8vo. 7s. 6d.

THE RELIGIONS OF THE
WORLD, and their Relations to
Christianity.  Fowurth Edition.
Fcap. 8vo. 5s.

ON THE LORD’S PRAYER.
Fourth Edition. Fcap. 8vo.
2s. 6d.

ON THE SABBATH DAY ; the
Character of the Warrior ; and
on the Interpretation of History.
Fcap. 8vo. 2s. 6d.

LEARNING AND WORKING.
—Six Lectures on the Foundation
of Colleges for Working Men.
Crown 8vo. §s.

THE INDIAN CRISIS. Five
Sermons. Crown 8vo. 2s. 6d.
LAW’S REMARKS ON THE
FABLE OF THE BEES. With
an Introduction by F. D. MAU-
RICE, M.A. Fcap. 8vo. 4. 6d.

MAYOR.—AUTOBIOGRA-
PHY OF MATTHEW ROBIN-
SON. ByJOHN E. B.MAYOR,
M.A. Fecp. 8vo. 5s. 64.

MAYOR. — EARLY STA-
TUTES of ST. JOHN’S COL-
LEGE, CAMBRIDGE. With
Notes. Royal 8vo. 18s.

MELIB@EUS IN LONDON.
By JAMES PAYN, M.A. Fcap.
8vo. 2s 6d.

MERIVALE. — SALLUST
FOR SCHOOLS. By C.MERI-
VALE, B.D. Seond Edition.
Fcap. 8vo. 4s. 6d.

*.* The Jugurtha and the Catalina
may be had separately, price
25. 6d. each.

MERIVALE.—KEATS
HYPERION Renderedinto Latin
Verse. By C. MERIVALE, B.D.
Second Edition. Extra fcap. 8vo.
3s. 6d.

MISS RUSSELL'S HOBBY.

A Novel. 2 vols. crown 8vo.
- cloth, 125,

MOOR COTTAGE.—A Tale
of Home Life. By the Author
gf ¢¢ Little Estella.” Crown 8vo.

MOORHOUSE.—SOME
MODERN DIFFICULTIES
respecting the FACTS of NA-
TURE and REVELATION.
By JAMES MOORHOUSE,
M.A. Fcap. 8vo. 2s5. 64.

MORGAN.—A COLLEC-
TION OF MATHEMATICAL
PROBLEMS and EXAMPLES.
By H. A. MORGAN, M.A.
Crown 8vo. 6s. 6d.

MORSE.—WORKING FOR
GOD, and other Practical Ser-
mons. By FRANCIS MORSE,
M. A. Second Edition. Fcap. 8vo.

55

MORTLOCK. — CHRISTI-
ANITY AGREEABLE TO
REASON. By the Rev. ED-
MUND MORTLOCK, B.D.
Second Edition.  Fcap. 8vo.
3. 6d.
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NAVILLE. — THE HEA-
VENLY FATHER. By ER-
NEST NAVILLE, Correspond-
ing Member of the Institute of
France, and formerly Professor of
Philosophy in the University of
Geneva. Translated by HENRY
DOWNTON, M.A. Extra fcap.
8vo. 7s. 6d.

NOEL—BEHIND THE
VEIL, and other Poems. By the
Hon. RODEN NOEL. Fcap.
8vo. 7s.

NORTHERN CIRCUIT.
Brief Notes of Travel in Sweden,
Finland, and Russia. With a
Frontispiece. Crown 8vo. §s.

NORTON.—THE LADY of
LA GARAYE. By the Hon.
Mrs. NORTON. With Vignette
and Frontispiece. New £dit.4s.6d.

O'BRIEN.—An ATTEMPT
to EXPLAIN and ESTABLISH
the DOCTRINE of JUSTIFI-
CATION BY FAITH ONLY.
By JAMES THOS. O’'BRIEN,
D.D. Bishop of Ossory. Zhird
Edition. 8vo. 12s.

O’BRIEN.—CHARGE (eli-
vered at the Visitation in 1863.
Second Edition. 8vo. 2s.

OLIPHANT.—AGNES
HOPETOUN’S SCHOOLS
AND HOLIDAYS. By MRS.
OLIPHANT. Royal 16mo.cloth,
gilt leaves, 3s. 6. .

OLIVER. — LESSONS IN
ELEMENTARY BOTANY.
With nearly 200 Illustrations.
By DANIEL OLIVER, F.R.S.
F.L.S. 18mo. 4s. 6d.

OPPEN—-FRENCH
READER, for the Use of Col-
leges and Schools. By EDWARD
A. OPPEN. Fcap. 8vo, cloth,
4. 67.

ORWELL.—The BISHOPS
WALK AND THE BISHOP’S
TIMES. Poems on the Days of
Archbishop Leighton and the
Scottish Covenant. By ORWELL.
Fecap. 8vo. ss.

OUR YEAR.— A Childs
Book, in Prose and Verse. By
the Author of ‘‘ John Halifax,
Gentleman.”  Illustrated by
CLARENCE DoOBELL.  Royal
16mo. cloth, 3s. 6d.

PALGRAVE.—HISTORY
OF NORMANDY AND OF
ENGLAND. By Sir FRANCIS
PALGRAVE. Completing the
History to the Death of William
Rufus. Vols. I. to IV. 8vo.
each 21s.

PALGRAVE.—A NARRA-

TIVE OF A YEAR’S JOUR-
NEY THROUGH CENTRAL
AND EASTERN ARABIA,
1862-3. By WILLIAM GIF-
FARD PALGRAVE (late of the
Eighth Regiment Bombay N.I.).
Third Edition. 2 vols. 8vo.
cloth. 28s.

PALGRAVE.—ESSAYS ON

ART. By FRANCIS TUR-
NER PALGRAVE, M.A. late
Fellow of Exeter College, Oxford.
Mulready—Dyce—Holman Hunt
—Herbert—Poetry, Prose, and
Sensationalism in Art—Sculpture
in England—The Albert Cross,
&c. Extra fcap. 8vo. (Uniform
with ¢¢ Arnold’s Essays.”)

PALGRAVE. — SONNETS

AND SONGS. By WILLIAM
SHAKESPEARE. GEM Ebi-
TioN. Edited by F. T PAL-
GRAVE, M.A. With Vignette
Title by JEENS, 35 6d.
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PALMER.—THE BOOK of
PRAISE : from the Best English
Hymn Writers. Selected and
arranged by ROUNDELL PAL-
MER. With Vignette by WooL-
NER. Pott 8vo. 4s. 64, Large
Type Edition, demy 8vo. 10s. 6d. ;
morocco, 28s.

PARKINSON.—A TREA-
TISE ON ELEMENTARY
MECHANICS. For the Use of
the Junior Classes at the Univer-
sit{ and the Higher Classes in
Schools. With a Collection of
Examples. By S. PARKIN-
SON, B.D. Zhkird Edition, re-
vised. Crown 8vo. gs. 6d.

PARKINSON.— A TREA-
TISE ON OPTICS. By S.
PARKINSON, B.D. Crown
8vo. 10s. 64.

PATERSON. — TREATISE
ON THE FISHERY LAWS
of the UNITED KINGDOM,
including the Laws of Angling.
By JAMES PATERSON, M.A.
Crown 8vo. 10s.

- PATMORE.—The ANGEL
IN THE HOUSE. Book I.
The Betrothal. —Book II. The
Espousals.—Book IIL. Faithful
for Ever. With Tamerton Church
Tower. By COVENTRY PAT-
MORE. 2 vols. fcap. 8vo. 12s.

*.* A New and Cheap Edition, in
I voL 18mo. beautifully printed
on toned paper, price 2s. 6d.

PATMORE. — THE VIC-
TORIES OF LOVE. Fcap.
8vo. 4s. 64.

PAULI —PICTURES OF
OLD ENGLAND. By Dr
REINHOLD PAULI Trans-
lated by E. C. OTTE. Crown
8vo. 8. 6d.

PEEL.—JUDAS MACCA-
BAUS. An Heroic Poem. By
EDMUND PEEL. Fcap. 8vo.

7s. 6d.
PHEAR.—ELEMENTARY
HYDROSTATICS. By J. B.
PHEAR, M.A. 7kird Edition.
Crown 8vo. §s. 6d.
PHILLIMORE.-PRIVATE
LAW among the ROMANS.
_ From the Pandects. By JOHN
GEORGE PHILLIMORE,Q.C.
8vo. 16s.
PHILLIPS.—LIFE on the
EARTH : its Origin and Succes-
sion. By JOHN PHILLIPS,
M.A. LL.D.F.R.S. With Illus-
trations. Crown 8vo. 6s. 64.
PHILOLOGY.—The JOUR-
NAL OF SACRED AND
CLASSICAL PHILOLOGY.
Four vols. 8vo. 125. 6d. each.
PLATO.—The REPUBLIC
OF PLATO. Translated into
English, with Notes. By Two
Fellows of Trinity College, Cam-
bridge (J. Ll Davies, M. A. and
D. J. Vaughan,M.A.). WithVig-
nette Portraits of Plato and So-
crates engraved by JEENS from an
Antique Gem. (Golden Treasury
Series). New Edition, 18mo. 4s.64.
PLATONIC DIALOGUES.
The. For English Readers. By
W. WHEWELL, D.D. F.R.S.
Master of Trinity College, Cam-
bridge. Vol. I. Second Edition,
containing 7%e Socratic Dialogues,
fcap. 8vo. 7s. 64. Vol. II. con-
taining ke Anti-Sophist Dia-
logues, 6s. 6d. Vol. III. con-
taining Zke Republic. 7s. 6d.
PLEA fora NEW ENGLISH
VERSION of THE SCRIP-
TURES. By a Licentiate of the
Church of Scotland. 8vo. 6s.
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POTTER.—A VOICE from
the CHURCH in AUSTRA-
LIA : Sermons preached in Mel-
bourne. By the Rev. ROBERT
POTTER, M.A. Extra fcap.
8vo. 4s. 64.

PRATT.—TREATISE ON
ATTRACTIONS, La Place’s
FUNCTIONS, andthe FIGURE
of the EARTH. By J. H.
PRATT, M.A. Second Edition.
Crown 8vo. 6s. 6d.

PROCTER.—A HISTORY
of the BOOK OF COMMON
PRAYER: with a Rationale of
its Offices. By FRANCIS
PROCTER, M.A. Fifth Edi-
tion, revised and enlarged. Cr.
8vo. 10s. 6d.

PROCTER.—An ELEMEN-
TARY HISTORY of the BOOK
of COMMON PRAYER. By
FRANCIS PROCTER, M.A.
18mo. 2s. 6d.

PROPERTY and INCOME.
—GUIDE to the UNPROTEC-
TED in Matters relating to Pro-
perty and Income. Second Edi-
tion. Crown 8vo. 3s. 6d.

PUCKLE.—AN ELEMEN-
TARY TREATISE on CONIC
SECTIONS and ALGEBRAIC
GEOMETRY,especially designed
for the Use of Schools and
Beginners. By G. HALE
PUCKLE, M.A. Swond Edi-
tion. Crown 8vo. 7s. 6d. '

RAMSAY. — THE CATE-
CHISER’S MANUAL; or, the
Church Catechism illustrated and
explained, for the Use of Clergy-
men, Schoolmasters, and Teach-
ers. By ARTHUR RAMSAY,
M.A.  Second Edition. 18mo.
1s. 6d.

RAWLINSON.—ELEMEN-
TARY STATICS. By G.

" RAWLINSON, M.A. Edited
by EDWARD STURGES,M.A.
Crown 8vo. 4s. 64.

RAYS of SUNLIGHT for
DARK DAYS. A Book of
Selections for the Suffering. With
a Preface by C. J. VAUGHAN,
D.D. 18mo. New FEdition.
35. 6d. ; morocco, old style, 9s.

REYNOLDS.—A SYSTEM
OF MEDICINE. To be com-
pleted in Three Volumes, 8vo.
Edited by J. RUSSELL REY-
NOLDS, M.D. F.R.C.P. Lon-
don. The First Volume will con-
tain : — PART I. — GENERAL
Diseasgs, or Affections of the
Whole System. § I.—Those de-
termined by agents operating from
without, such as the exanthemata,
malarial diseases, and their allies.
§ II.—Those determined by con-
ditions existing within the body,
such as Gout, Rheumatism, Rick-
ets, &. PART II.—LocAL
DiseAses, or Affections of Par-
ticular Systems, § I.—Diseases
of the Skin. [/7 the Press.

REYNOLDS.—NOTES OF
THE CHRISTIAN LIFE. A
Selection of Sermons by HENRY
ROBERT REYNOLDS, B.A.
President ot Cheshunt College,
and Fellow of University College,
London. Crown 8vo. cloth, price
7. 6d.

ROBERTS—DISCUS-
SIONS ON THE GOSPELS.
By REV. ALEXANDER RO-
BERTS, D.D. Second Ediiiorn,
reg;ised and enlarged. 8vo. cloth,
16s.
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ROBY. —AN ELEMEN-
TARY LATIN GRAMMAR.
By H.J. ROBY, M.A. " 18mo.
2s. Oa.

ROBY.—-STORY OF A
HOUSEHOLD, and Other
Poems. By MARY K. ROBY,
Fcap. 8vo. 5s.

ROMANIS.—SERMONS
PREACHED at ST. MARY'S,
READING. By WILLIAM
ROMANIS, M.A. First Series.
Fcap. 8vo. 6s. Also, Second
Series. 6s.

ROSSETTIL—GOBLIN
MARKET, and other Poems.
By CHRISTINA ROSSETTIL
With Two Designs by D. G.
ROSSETTI. Second Edition. Feap.
8vo. 5s.

ROSSETTI —THE
PRINCE'S PROGRESS, and
other Poems. By CHRISTINA
ROSSETTI. With Two Designs
by D. G. ROSSETTIL.

ROSSETTIL.—DANTE’S
COMEDY : 7hkhe Hell. Trans-
lated into Literal Blank Verse.

- By W. M. ROSSETTIL. Fcap.
8vo. cloth, 5s.

ROUTH.—TREATISE ON
DYNAMICS OF RIGID BO-
DIES. With Numerous Exam-
ples. By E, J. ROUTH, M.A,
Crown 8vo. 10s. 6d.

ROWSELL.—The ENGLISH
UNIVERSITIES AND THE.
ENGLISH POOR. Sermons
preached before the University of
Cambridge. By T. J. ROW-
SELL, M.A. Fcap. 8vo. 2s.

ROWSELL —MAN’S
LABOUR and GOD’S HAR-
VEST. Sermons preached be-
fore the University of Cambridge
in Lent, 1861. [Fcap. 8vo.
3s.

RUFFINI. — VINCENZO ;
or, SUNKEN ROCKS. By
JOHN RUFFINL Three vols.
crown 8vo. 31s. 6d.

RUTH and her FRIENDS.
A Story for Girls. With a Fron-
tispiece. Fourtk Edition. Royal
16mo. 3s. 6d.

SCOURING of the WHITE
HORSE; or, the Long Vacation
Ramble of a London Clerk. By
the Author of “Tom Brown's
School Days.” Illustrated by
DovYLE. Eighth Thousand. Imp.
16mo. 8. 64. .

SELWYN.— THE WORK
of CHRIST in the WORLD.
By G. A. SELWYN, D.D.
Third Edition. Crown 8vo.
25.

SHAKESPEARE.—THE
WORKS OF WILLIAM
SHAKESPEARE. Edited by
WM. GEORGE CLARK, M.A.
and W. ALDIS WRIGHT,
M.A. Vols. 1 to 8, 8vo. 10s. 64.
each. To be completed in Nine
Volumes.

SHAKESPEARE.—THE
COMPLETE WORKS OF
WILLIAM SHAKESPEARE.
The Globe Edition. Edited by
W. G. CLARK and W. A.
WRIGHT. Fifty-first Thousand.
Royal Fcap. 3s. 64.
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SHAKESPEARE. — SON-
NETS AND SONGS. By
WILLIAM SHAKESPEARE.
Edited by FRANCIS TURNER
PALGRAVE, M.A. The GEM
EpiTioN. With Vignette Title,
price 3s. 64.

SHAKESPEARE'S TEM-
PEST. With Glossarial and Ex-
lanatory Notes. By the Rev. J.

. JEPHSON. 18mo. 3s. 6d.

SHAIRP. — KILMAHOE:
and other Poems. By J. CAMP-
BELL SHAIRP.. Fcap. 8vo. 55

SHIRLEY.—ELIJAH; Four
University Sermons. 1. Samaria.
II. Carmel.—III. Kishon.—IV.
Horeb, By W. W. SHIRLEY,
D.D. Fcap. 8vo. 2s. 6d.

SIMEON.—STRAY NOTES
ON FISHING AND ON
NATURAL HISTORY. By
CORNWALL SIMEON. Cr.
8vo. 7s. 6d.

SIMPSON.—AN EPITOME
OF THE HISTORY OF THE
CHRISTIAN CHURCH. By
WILLIAM SIMPSON, M.A.
Fourth Edition. Fcp. 8vo. 3s. 6d.

SKETCHES FROM CAM-
BRIDGE. By A DON. Crown
8vo. cloth, 3s. 6d.

SMITH.—A LIFE DRAMA,
and other Poems. By ALEX-
ANDER SMITH. Fcap. 8vo.
2s. 6d.

SMITH. — CITY POEMS.
By ALEXANDER SMITH,
Fcap. 8vo. 5s.

SMITH—EDWIN OF

DEIRA. Second Edition. By
ALEXANDER SMITH. Fcap.
8vo. 5s.

SMITH.—A LETTER TO
A WHIG MEMBER of the
SOUTHERN INDEPEN-
DENCE ASSOCIATION. By
GOLDWIN SMITH. Extra
fcap. 8vo. 2s.

SMITH. — ARITHMETIC
AND ALGEBRA. By BAR-
NARD SMITH, M.A. Ninth
Edition. Cr. 8vo. cloth, 10s. 6d.

SMITH. — ARITHMETIC
for the USE of SCHOOLS.
New Edition. Crown 8vo. 4s. 6d.

SMITH.—A KEY to the
ARITHMETIC for SCHOOLS.
gcoéf Edition. Crown 8vo.

'SMITH.—EXERCISES IN

ARITHMETIC. By BAR-

NARD SMITH. With Answers.

Crown 8vo. limp cloth, 2s. 6d.
Or sold separately, as follows :—

%’art I. 1s. Part I 1s. Answers,
d.

SMITH.—SCHOOL CLASS
BOOK of ARITHMETIC. By
BARNARD SMITH. 18mo.
cloth, 35. Or sold separately,
Parts 1. and II 1od. each, Part
IIL 1s.

SMITH —KEYS TO
SCHOOL CLASS BOOK OF
ARITHMETIC. By BAR-’
NARD SMITH. Complete in
One Volume, 18mo. 6s. 64.; or
Parts I. II. and IIL 2s. 64. each.

SMITH.—A ONE SHILLING
BOOK of ARITHMETIC for

 NATIONAL and ELEMEN-
TARY SCHOOLS. By BAR-
NARD SMITH. 18mo. cloth.

SNOWBALL.—THE ELE-

MENTS of PLANE and SPHE-
RICAL TRIGONOMETRY.
By J. C. SNOWBALL, M. A.
Tenth Edition. Crown 8vo. 7s. 6d.
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SPRING SONGS.—By a
WEST HIGHLANDER. With
a Vignette Illustration by GOUR-
LAY STEELE. Fcap. 8vo. Is. 64.

STEPHEN. — GENERAL
VIEW ofthe CRIMINAL LAW
of ENGLAND, By J. FITZ-
JAMES STEPHEN. “8vo. 18s.

STORY.—MEMOIR of the
Rev. ROBERT STORY. By
R.H.STORY. Crown 8vo. 7s.64.

STRICKLAND.—ON COT-
TAGE CONSTRUCTION and
DESIGN. ByC. W. STRICK-
LAND. With Specifications and
Plans. 8vo. 7s. 6d.

SWAINSON. — A HAND-
BOOK to BUTLER’'S ANA-
LOGY. ByC. A. SWAINSON,
D.D. Crown 8vo. Is. 6d.

SWAINSON.—TheCREEDS
of the CHURCH in their RE-
LATIONS to HOLY SCRIP-
TURE and the CONSCIENCE
of the CHRISTIAN. 8vo.
cloth, 9s.

SWAINSON.—The AUTHO-
RITY of the NEW TESTA-
‘MENT, and other Lectures,
delivered before the University of
Cambridge. 8vo. cloth, 125 -

TACITUS.—The HISTORY
of TACITUS translated into
ENGLISH. ByA.]J.CHURCH,
M.A., and W. J. BRODRIBB,
M.A. With a Map and Notes.
8vo. 10s. 6d.

TAIT AND STEELE—A
TREATISE ON DYNAMICS,
with numerous Examples. B
P.G. TAITand W. J. STEELE.
Second Edition, Crown 8vo.
10s. 64d.

TAYLOR.—WORDS AND
PLACES; or, Etymological Illus-
trations of History, Ethnology,
and Geography. By the Rev.
ISAAC TAYLOR. Seond Edi.
tion. Crown 8vo. 12s. 64,

TAYLOR.—THE RESTO-
RATION OF BELIEF. New
and Revised Edition. By ISAAC
ST:AYLOR’ Esq. Crown 8vo.

TAYLOR.—BALLADS
AND SONGS OF BRIT-
TANY. By TOM TAYLOR.
With Illustrations by TIssoT,
MiLLAls, TENNIEL, KEENE, and
H. K. BrOwWNE. Small 4to.
cloth gilt, 12s.

TAYLOR. — GEOMETRI-
CAL CONICS. ByC.TAYLOR,
B.A. Crown 8vo. 7s. 6d.

TEMPLE. —SERMONS
PREACHED in the CHAPEL
of RUGBY SCHOOL. By F.
TEMPLE, D.D. 8vo. 10s. 6d.

THORPE.— DIPLOMATA-
RIUM ANGLICUM AEVI
SAXONICI. A Collection of
ENGLISH CHARTERS, from
the Reign of King Athelberht of
Kent, A.D. DC.V. to that of
William the Conqueror. With
a Translation of the Anglo-Saxon.
By BENJAMIN THORPE,
Member of the Royal Academy
of Sciences, Munich. 8vo. cloth,
price 21s.

THRING.—A CONSTRU-
ING BOOK. Compiled by
EDWARD THRING, M.A.
Fcap. 8vo. 2s. 6d.
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THRING.—A LATIN GRA-
DUAL. A First Latin Constru-
ing Book for Beginners. Fcap.
8vo. 2s. 6d.

THRING.— THE ELE-
MENTS of GRAMMAR taught
in ENGLISH. Z%ird Edition.
18mo. 25,

THRING.—THE CHILD’S
GRAMMAR. A4 New Edition.
18mo. Is. ’

THRING. — SERMONS
DELIVEREDatUPPINGHAM
SCHOOL. Crown 8vo. §s.

THRING.—SCHOOL
SONGS. With the Music ar-
ranged for four Voices. Edited
by the Rev. EDWD. THRING,
M.A. and H. RICCIUS. Small
folio, 7s. 6d.

THRING. — EDUCATION
and SCHOOL. By the Rev.
EDWARD THRING, M.A.
Crown 8vo. 6s. 6d.

. THRUPP.—The SONG of
SONGS. A New Translation,
with a Commentary and an In-
troduction. By the Rev. J. F.
THRUPP. Crown 8vo. 7s. 6d.

THRUPP. — ANTIENT
JERUSALEM: a New Investi-
gation into the History, Topo-
graphy, and Plan of the City,
Environs, and Temple. With
Map and Plans. 8vo. 15s.

THRUPP. — INTRODUC-
TION to the STUDY and USE
of the PSALMS. 2 vols. 21s.

THRUPP—PSALMS AND
HYMNS for PUBLIC WOR-
SHIP. Selected and Edited by
the Rev. J. F.. THRUPP, M. A.
18mo. 25. common paper, Is. 44.

TOCQUEVILLE. — ME-
MOIR, LETTERS, and RE-
MAINS of ALEXIS DE TOC-
QUEVILLE. Translated from
the French by the Translator of
‘‘Napoleon’s Correspondence with
King Joseph.” With Numerous
additions, 2 vols. crown 8vo.
21s.

TODD.—THE BOOKS OF
THE VAUDOIS. The Walden-
sian Manuscripts preserved in the
Library of Trinity College, Dub-
lin, withan Appendix by JAMES
HENTHORN TODD, D.D.
Crown 8vo. cloth, 6s.

TODHUNTER. — WORKS
by ISAAC TODHUNTER,
M.A. F.R.S.

EUCLID FOR COLLEGES
AND SCHOOLS. NewEdition.
18mo. 3s. 6d.

ALGEBRA FOR BEGINNERS.
Wit6h numerous Examples. 18mo.
25, 6d.

A TREATISE ON THE DIF-
FERENTIAL CALCULUS.
Withnumerous Examples. Fourth
Edition. Crown 8vo. 105 6d.

A TREATISE ON THE IN-
TEGRAL CALCULUS. Second
Edition. With numerous Exam-
ples. Crown 8vo. 10s. 6d.

A TREATISE ON ANALYTI-
CAL STATICS. Second Edition.
Crown 8vo. 10s. 6d.

A TREATISE ON CONIC SEC-
TIONS. 7kird Edition. Crown
8vo. 7s. 6d.

ALGEBRA FOR THE USE OF
COLLEGES AND SCHOOLS.
Third Edition, Crown 8vo.
7s. 6d.
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PLANE TRIGONOMETRY for
COLLEGES and SCHOOLS.
Third Edition. Crown 8vo. §s.

A TREATISE ON SPHERICAL
TRIGONOMETRY forthe USE
of COLLEGES and SCHOOLS.
Second Edition. Crown 8vo. 45.6d.

CRITICAL HISTORY OF THE
PROGRESS of the CALCULUS
of VARIATIONS during the
NINETEENTH CENTURY.
8vo. 12s.

EXAMPLES OF ANALYTICAL .

GEOMETRY of THREE DI-
MENSIONS. Second Edition.
Crown 8vo. 4s.

A TREATISE on the THEORY
of EQUATIONS. Crown 8vo.
cloth, 7s. 6d.

MATHEMATICAL THEORY

OF PROBABILITY. 8vo.cloth,
18s.

TOM BROWN’S SCHOOL
DAYS. By an OLD BOY. 31sf
Thousand. Fcap. 8vo. §s.

(People's Edition, 2s.)

TOM BROWN at OXFORD.
By the Author of “ Tom Brown’s
School Days.” New Edition.
Crown 8vo. 6s.

TRACTS FOR PRIESTS
and PEOPLE. By VARIOUS
WRITERS.

THE FIRST SERIES, Crown
8vo. 8s.

THE SECOND SERIES, Crown
8vo. 8s.

The whole Series of Fifteen
Tracts may be had separately,
price One Shilling each.

TRENCH.— WORKS BY
R. CHENEVIX TRENCH,
D.D. Archbishop of Dublin.

NOTES ON THE PARABLES
OF OUR LORD. Nintk Edi-
tion. 8vo. 12s.

NOTES ON THE MIRACLES
OF OUR LORD. Seventk Edi-
tion. 8vo. 12s.

SYNONYMS OF THE NEW
. TESTAMENT. New Edition.
1 vol. 8vo. cloth, 10s. 6.

ON THE STUDY OF WORDS.
Eleventh Edition. Fcap. 4s.

ENGLISH PAST AND PRE-
SENT. Fifth Edition. Fcap.
8vo. 4s.

PROVERBS and their LESSONS.
Fifth Edition. Fcap. 8vo. 3s.

SELECT GLOSSARY OF EN-
GLISH WORDS used Formerly
in SENSES different from the
PRESENT. Z7hird Edition. 4s.

ON SOME DEFICIENCIES IN
our ENGLISH DICTION-
ARIES. Second Edition. 8vo. 3s.

SERMONS PREACHED IN
WESTMINSTER ABBEY. Se-
cond Edition. 8vo. 10s. 6d.

THE FITNESS OF HOLY
SCRIPTUREforUNFOLDING
the SPIRITUAL LIFEof MAN:
Christ the Desire of all Nations;
or, the Unconscious Prophecies
of Heathendom. Hulsean Lec-
tures. Fcap. 8vo. Fourth Edi-
tion.  §s.

ON THE AUTHORIZED VER-
SION of the NEW TESTA-

- MENT. Seond Edition. 7s.

POEMS. 7s. 6d.

JUSTIN MARTYR and OTHER
gOngS. Fifth Edition. Fcap.
vo. 6s.
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ARCHBISHOP TRENCH’S
WORKS (continued)—

GUSTAVUS ADOLPHUS.
SOCIAL ASPECTS OF THE
THIRTY YEARS’ WAR. Fecp.
8vo. cloth, price 2s. 64.

POEMS. Collected and Arranged
Anew. Fcp. 8vo. 7s. 6d.

POEMS FROM EASTERN
SOURCES, GENOVEVA, and
other Poems. Second Edition.
5s. 6d.

ELEGIAC POEMS. 7hird Edition.
2s. 6d.

CALDERON’S LIFE'S A
DREAM : the Great Theatre of
the World. With an Essay on
his Life and Genius. 4s. 6d.

REMAINS OF THE LATE
MRS. RICHARD TRENCH.
Being Selectionsfrom herJournals,
Letters, and other Papers. Second
Edition. With Portrait, 8vo. 15s.

COMMENTARY ON THE
EPISTLES TO THE SEVEN
CHURCHES IN ASIA. Second
Edition. 8s. 6d.

SACRED LATIN POETRY.
Chiefly Lyrical. Selected and
Arranged for Use. Second Edition.
Corrected and Improved. Fcap.
8vo. 7s.

TRENCH—BRIEF NOTES
on the GREEK of the NEW
TESTAMENT (for English

Readers). BytheRev. FRANCIS *

TRENCH, M.A. Crown 8vo.
cloth, 6s.

TRENCH.—FOUR ASSIZE
SERMONS, Preached at York
and Leeds. Bythe Rev. FRANCIS
TRENCH, M.A. Crown 8vo.
cloth, 2s. 64.

TREVELYAN-THE
COMPETITION WALLAH.
By G. O. TREVELYAN. New
Edition, Cr. 8vo. 6s.

TREVELYAN.— CAWN-
PORE. By G. O. TREVEL-
YAN. Illustrated with Plan,
Second Edition. Crown 8vo. 6s.

TUDOR.—THE DECA-
LOGUE VIEWED AS THE
CHRISTIAN’S LAW, with
Special Reference to the Ques-
tions and Wants of the Times.
By the Rev. RICH. TUDOR,
B.A. Crown 8vo. 10s. 6d.

TULLOCH.—The CHRIST
OF THEGOSPELS AND THE
CHRIST OF MODERN CRI-
TICISM. Lectures on M. RE-
NAN’s ““Vie de Jésus.” By
JOHN TULLOCH, D.D. Prin-
cipal of the College of St. Mary,
in the University of St. Andrew.
Extra fcap. 8vo. 4s. 6d.

TURNER.—SONNETS by
the Rev. CHARLES TENNY-
SON TURNER. Dedicated to
his brother, the Poet Laureate.
Fecap. 8vo. 4s. 6d.

TYRWHITT.—THE
SCHOOLING OF LIFE. By
R. St. JOHN TYRWHITT,
M.A. Vicar of St. Mary Mag-
dalen, Oxford. Fcap. 8vo. 3s. 64.

VACATION TOURISTS;
and Notes of Travel in 1861.
Edited by F. GALTON, F.R.S.
With Ten Maps illustrating the
Routes. 8vo. 14s.

VACATION TOURISTS ;
and Notes of Travel in 1862and 3.
Edited by FRANCISGALTON,
F.R.S. 8vo. 16s.
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VAUGHAN. — SERMONS
PREACHED in ST. JOHN’S
CHURCH, LEICESTER,
during the Years 1855 and 1856.
By DAVID J. VAUGHAN,
M.A. Vicar of St Mamns
Leicester. Crown 8vo. §s. 64.

VAUGHAN. — SERMONS
ON THE RESURRECTION.
With a Preface. By D. J.
VAUGHAN, M.A. Fcap. 8vo.
35

VAUGHAN.—-THREE
SERMONS ON THE ATONE-
MENT. ByD.J. VAUGHAN,
M.A. 1s.6d.

VAUGHAN. — SERMONS
ON SACRIFICE AND PRO-
PITIATION. By D. ]J.
VAUGHAN, M.A. 25 6d.

VAUGHAN.—CHRISTIAN
EVIDENCES and the BIBLE.
By DAVID J. VAUGHAN,
M.A. New Edition. Revised
and enlatgd. Fcap. 8vo. cloth,
price §s.

VAUGHAN.—WORKS BY
CHARLES 7J. VAUGHAN,
D.D. Vicar of Doncaster :(—

NOTES FOR LECTURES ON
CONFIRMATION. With suit-
able Prayers. Sixth Edition.
1s.

LECTURES on the EPISTLE to
the PHILIPPIANS. Second
Edition. 7s. 6d.

LECTURES on the REVELA-
TION of ST. JOHN. 2 vols.
crown 8vo. 15s. Second Edi-
tion. 1%s.

EPIPHANY, LENT, AND
EASTER. A Selection of Ex-
pository Sermons Second Edition.
Crown 8vo. 10:6d.

THE BOOK AND THE LIFE:
and other Sermons Preached
before the University of Cam-
bridge. Second Edition. Fcap.
8vo. 4s. 6d.

MEMORIALS OF HARROW
SUNDAYS. A Selection of
Sermons preached in Harrow
School Chapel. With a View of
the Chapel. Fourth Edition. Cr.
8vo. 10s. 6d.

ST. PAUL’S EPISTLE TO THE
ROMANS. The Greek Text
with English Notes.  Second
Edition. Crown 8vo. red leaves,

§s.

REVISION OF THE LITURGY.
Four Discourses. With an In-
troduction. 1. ABsorLuTisM. II.
REGENERATION. III. ATHANA-
SIAN CREED. IV. BURIAL SER-
VICE. V. HOLY ORDERS. Seond
Edit, Cr. 8vo. red leaves, 4s. 6d.

LESSONS OF LIFE AND GOD-
LINESS. A Selection of Ser-
mons Preached in the Parish
Chyrch of Doncaster. Third
Edition. Fcap. 8vo. 4s. 6d.

WORDS from the GOSPELS.
A Second Selection of Sermons
Preached in the Parish Church of
Doncaster Second Edition. Fcap.
8vo. 4s. 6

THE EPISTLES of ST. PAUL.
For English Readers. Part I
containing the First Epistle to the
Thessalonians. 8vo. Is. 6Z. Each
Epistle will be published sepa-
rately.

TI%E CIéIURCH OF THE FIRST

AY
Series I. The Church of Jeru-

salem.
55 II. The Church of the
Gentiles.
,» III. The Church of the
World.
Fcap. 8vo. cloth, 4s. 64. each,
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LIFE’'S WORK AND GOD’'S
DISCIPLINE. Three Sermons.
Fcap. 8vo. cloth, 2s. 64.

VAUGHAN.—MEMOIR of
ROBERT A. VAUGHAN,
Author of _ “ Hours with the
Mystics.” ByROB.VAUGHAN,
D.D. Second Edition. Revised
and enlarged. Extra fcap. 8vo. §s.

VILLAGE SERMONS BY
A NORTHAMPTONSHIRE
RECTOR. With a Preface on
the Inspiration of Holy Scripture.
Crown 8vo. 6.

VIRGIL. — THE ANEID
Translated into English Blank
VERSE. By JOHN MILLER.
Crown 8vo. 10s. 6d.

VOLUNTEER’S SCRAP
BOOK. By the Authar of ¢ The
Cambridge Scrap Book.” Crown
4to. 7s. 6d.

WAGNER.—MEMOIR OF
THE REV. GEORGE WAG-
NER, late of St. Stephen’s,
Brighton. By J. N. SIMPKIN-
SON, M.A. Zkird and Cheaper
Edition. §s.

WARREN.—AN ESSAY on
GREEK FEDERAL
COINAGE. By the Hon. J.
LEICESTER WARREN, M. A.
8vo. 2s5. 6d.

WESTCOTT. — HISTORY
of the CANON of the NEW
TESTAMENT during the First
Four Centuries. By BROOKE
FOSS WESTCOTT, M.A. Cr

- 8vo. New Edition. Revised.

[Zn the press.

WESTCOTT. — CHARAC-
TERISTICS of the GOSPEL
MIRACLES. Sermons Preached
before the University of Cam-
bridge. With Notes. By B. F.
WESTCOTT, M.A. Crown 8vo.
4. 6d.

WESTCOTT. —INTRO-
DUCTION TO THE STUDY
OF THE FOUR GOSPELS.
By B. F. WESTCOTT, M.A.
Crown 8vo. 10s. 6d.

WESTCOTT.—The BIBLE
in the CHURCH. A Popular
Account of the Collection and
Reception of the Holy Scriptures
in the Christian Churches. By
B. F.WESTCOTT, M.A. 18mo.
4. 6d.

WESTMINSTER PLAYS.—
Sive Prologi et Epilogi ad Fabu-
las in Sti Petri Colleg: actas qui
Exstabant collecti et justa quoad
licuit annorum serie ordinati,
quibus accedit Declamationum
qui vocantur et Epigrammatum
delectus cur. F. MURE, A. M.,
H. BULL, A.M., CAROLO
B. SCOTT, B.D. 8vo. 12s. 6d.

WILSON.—COUNSELS OF
AN INVALID: Letters on Re-
ligious Subjects. By GEORGE
WILSON, M.D. With Vig-
nette Portrait. Fcap. 8vo. 4s. 64.

"WILSON—RELIGIO

CHEMICI. ByGEORGE WIL-
SON, M.D. With a Vignette
beautifully engraved after a De-
sign by NOEL PATON. Crown
8vo. 8. 64.

WILSON. — MEMOIR OF
GEORGE WILSON, M.D.
F.R.S.E. Regius Professor of
Technology in the University of
Edinburgh. By his Sister. Third
Thousand. 8vo. with Portrait,
10s. 6d.

WILSON. — THE FIVE
GATEWAYS OF KNOW-
LEDGE. By GEORGE WIL-
SON, M.D. New Edit. Fcap.
8vo. 2s5. 6d. or in Paper Covers,
1s.
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WILSON.—The PROGRESS
gf the TELEGRAPH. Fcap.
vo. Is.

WILSON.—_PREHISTORIC
ANNALS of SCOTLAND. By
DANIEL WILSON, LL.D.
Author of ¢‘Prehistoric Man,”
&c. 2 vols. demy 8vo. New
Edition. With numerous Illus-
trations. 36s.

WILSON.—PREHISTORIC
MAN. ByDANIEL WILSON,
LL.D. New Edition. Revised
and partly re-written, with nume-
rous Illustrations, I vol. 8vo.
21s.

WILSON. — A TREATISE
ON DYNAMICS. By W. P.
WILSON, M.A. 8vo. gs. 64.

WILTON.—THE NEGEB;
or, “South Country” of Scrip-
ture. BytheRev. E. WILTON,
M.A. Crown 8vo. 7s. 6d.

WOLFE—ONE HUN-
DRED AND FIFTY ORIGI-
NAL PSALM AND HYMN
TUNES. For Four Voices. By
ARTHUR WOLFE, M.A.
105, 6d.

WOLFE. — HYMNS FOR
PUBLIC WORSHIP, Selected
and arranged by
WOLFE, M. A. 18mo. 25s. Com-
mon Paper Edition, Is. or twenty-
five for 12,

WOLFE. — HYMNS FOR
PRIVATE USE.—Selected and
arrangedby ARTHUR WOLFE,
M.A. 18mo. 2s.

ARTHUR -

WOODFORD.—CHRIS-
TIAN SANCTITY. By JAMES
RUSSELLWOODFORD, M.A.
Feap. 8vo. cloth. 3s.

WOODWARD. — ESSAYS,
THOUGHTS and REFLEC-
TIONS, and LETTERS. By
the Rev. HENRY WOOD-
WARD. Edited by his Son.
Fifth Edition. 8vo. cloth. 10s. 6d.

WOODWARD.—THE
SHUNAMITE. By the Rev.
HENRY WOODWARD, M.A.
Edited by his Son, THOMAS
WooDWARD, M.A. Dean of
Down. Second Edition. Crown
8vo. cloth. 10s. 64.

WOOLLEY.— LECTURES
DELIVERED IN AUSTRA-
LIA. By JOHN WOOLLEY,
D.C.L. Crown 8vo. 8s. 6d.

WOOLNER.—MY BEAU-
TIFUL LADY. By THOMAS
WOOLNER. With a Vignette
by ARTHUR HUGHES. Zkird
Edition. Fcap. 8vo. 5s.

WORDS FROM THE
POETS. Selected by the Editor
of ‘“Rays of Sunlight.” 18mo.
extra cloth gilt, 3s. 6d.

WORSHIP (THE) OF GOD
AND FELLOWSHIPAMONG
MEN—Sermons on Public Wor-
ship. By MAURICE and Others.
Fcap. 8vo. cloth. 3s. 64.

WORSLEY.— CHRISTIAN
DRIFT OF CAMBRIDGE
WORK. Eight Lectures. By
T. WORSLEY, D.D. Crown.
8vo. cloth, 6s.
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WRIGHT.—HELLENICA ;

or, a History of Greece in Greek,
-asrelated by Diodorus and Thucy-
dides, being a First Greek Reading
Book, witﬁ Explanatory Notes,
Critical and Historical. By J.
WRIGHT, M. A. Second Edition,
WITH A VOCABULARY. 1I2mo.
3s. 6d.

WRIGHT.—A HELP TO

. LATIN GRAMMAR; or, the
Form and Use of Words in Latin.
With Progressive Exercises. Cr.
8vo. 4s.

WRIGHT. — THE SEVEN

KINGS OF ROME: An Easy
Narrative, abridged from the First

Book of Livy by the omission of
difficult passages, being a First
Latin Reading Book, with Gram-
matical Notes. Fcap. 8vo. 3s.
WRIGHT.—DAYVID, KING
OF ISRAEL: Readings for the

WRIGHT. — A VOCABU-
LARY AND EXERCISES ON
THE ¢ SEVEN KINGS OF
ROME.” Fcap. 8vo. 2s. 6d.

*.* The Vocabulary and Exercises
may also be had bound up with Young. By J. WRIGHT, M.A.
““The Seven Kings of Rome.” With Six Illustrations. Royal
55. 16mo. cloth, gilt. 3s. 64.

WORKS BY THE AUTHOR OF

“«THE HEIR OF REDCLYFFE”

THE PRINCE AND THE PAGE. A Book for the Young.

A BOOK OF GOLDEN DEEDS. 18mo. 4s. 6d.

HISTORY OF CHRISTIAN NAMES. Two Vols. Crown 8vo. 1/. Is.
THE HEIR OF REDCLYFFE. Fifteenth Edition. Crown 8vo. 6s.
DYNEVOR TERRACE. 7%hird Edition. Crown 8vo. 6s.

THE DAISY CHAIN. Zighth Edition. Crown 8vo. 6s.

THE TR;AL; More Links of the Daisy Chain.  Z%ird Edition.
8vo. 6s.

HEARTSEASE. Nintk Edition. Crown 8vo. 6s.

HOPES AND FEARS. Z7%ird Edition. Crown 8vo. 6s.
THE YOUNG STEPMOTHER. Crown 8vo. 6.

THE LANCES OF LYNWOOD. 18mo. cloth, 3s. 6.
THE LITTLE DUKE. WNew Edition. 18mo. cloth, 3s. 6d.
CLEVER WOMAN OF THE FAMILY. 2vols. 12s.

Crown
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ELEMENTARY SCHOOL CLASS BOOKS.

The Volumes of this Series of ELEMENTARY ScHooL Crass Books are handsomely
printed in a form that, it is hoped, will assist the young student as muck as clear-
ness of type and distinctness of arrangement can effect. They are published at a
moderate price to ensure an extensive sale in the Schools of the United Kingdom
and the Colonies.

1. EUCLID FOR COLLEGES AND SCHOOLS.
By I. TODHUNTER, M.A. F.R.S. 18mo. 3s. 6d.

2. ALGEBRA FOR BEGINNERS.

By I. TODHUNTER, M.A. F.R.S. 18mo 2s. 6d.
*«* A KEY to this work will shortly be published.

3. THE SCHOOL CLASS BOOK OF ARITHMETIC.
By BARNARD SMITH, M.A. Parts I. and I1. 18mo. limp cloth, price 104. each.
Part 111 1s. or 3 parts in one Volume, price 3s.

KEY TO CLASS BOOK OF ARITHMETIC.
Complete, t8mo. cloth, price 6s. 64. Or separately, Parts I. II. & IIL. 25, 6d. each.

4. AN ELEMENTARY LATIN GRAMMAR.
By H. J. ROBY, M.A. 18mo. 2s.
5. MYTHOLO(:Y FOR LATIN VERSIFICATION.
A Brief Sketch of the Fables of the Ancnents prepared to be rendered into Latin
Verse for Schools. By F. HODGSON, B.D. New Edition. Revised by F. C.
HODGSON, M.A. Fellow of King’s (.ollege, Cambridge. 18mo. 3s.
6. A LATIN GRADUAL FOR BEGINNERS
A First Latin Construing Book. By EDWARD THRING, M.A. 18mo. 2s. 64.
7. SHAKESPEARE’S TEMPEST
The Text taken from ‘‘ The Cambnd e Shakespearc With Glossarial and Explana-
tory Notes. By the Rev. J. M. HSON. 18mo. cloth, 3s. 6d.
8. LESSONS IN ELEMEN TARY BOTANY.
The Part on Systematic Botany based l’!FOI'I Material left in Manuscript by the late
Professor HEI\{SLOW With Nearly Two Hundred Illustrations. By DANIEL
OLIVER, F.R.S. F.L.S. 18mo. cloth,
. AN ELEMENTARY HISTORY OF THE BOOK OF
COMMON PRAYER. By FRANCIS PROCTER, M.A. 18mo. 2s. 6.
10. ALGEBRAICAL EXERCISES
ssively arranged by Rev. C. A. JONES, M.A. and C. H. CHEYNE, M.A.
Mat ematical Masters in Westminster School. Pott 8vo. cloth, price 2s. 6d.
11. THE BIBLE IN THE CHURCH.
A Popular Account of the Collection and Reception of the Holy Scriptures in the
Christian Churches. By BROOK FOSS WESTCOTT, M.A. 18mo. 4s. 64.
12. THE BIBLE WORD BOOK.
A Glossary of Old English Bible Words. By J. EASTWOOD, M.A. and W. ALDIS
WRIGHT, M.A. (Nearly ready.
13. LESSONS IN ELEMENTARY PHYSIOLOGY.
With numerous Illustrations. By T. H. HUXLEY, F.R.S. Professor of Natural
History in the Government School of Mines. [«Vearly ready, i 18mo.
14. POPULAR ASTRONOMY.
A Series of Lectures delivered at Ipswich. By GEORGE BIDDELL AIRY,
Astronomer Royal. 18me. cloth. [In the /'rcu
15. LESSONS ON ELEMENTARY CHEMISTRY
By HENRY ROSCOE, F.R S. Professor of Chemistry in Owen’s College, Man-
chester. With numerous Illustrations.
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A LADY IN HER OWN RIGHT. By WESTLAND MARSTON.
THE MOOR COTTAGE. By May BEVERLEY.

THE HEIR OF REDCLYFFE.

DYNEVOR TERRACE. By the Author of “The Heir of
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HOPES AND FEARS. By the Author of “The Heir of
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